
Name: Class: Date:

ALvl Chem 2 EQ P1 22w to 09s Paper 1 Atoms, molecules and stoichiometry 43marks

As you start and work through this worksheet you can tick off your progress to show yourself how much you have done, and what you need to do next. The first task is just to read the first question and should take you less than one minutes to complete.

Paper 1 Topic 2	RANK:	P1 Noob	P1 Novice	P1 Bronze	P1 Silver	P1 Gold	P1 ¹ Winner	P1 Hero	P1 Legend
Checklist Tick each task off as you go along		1 Q started	1 Q done	10% of marks	25% of marks	40% of marks	50% of marks	75% of marks	100% of marks
Topic (marks)	43		1	4	11	17	22	32	43
Time @75s/mark (minutes)	54		1	5	13	22	27	40	54

What the most thoughtful students will get out of their extensive studying will be a capacity to do meaningful brain-based work even under stressful conditions, which is a part of the self-mastery skillset that will continue to deliver value for the whole of their lives. Outstanding grades will also happen, but the most important goal from skillful action in study is being better at any important task, even if circumstances do not feel ideal.

As you are moving through your studies you can learn more about yourself by trying out new ways to manage yourself, and analysing how effective those new techniques were. In this reflective process not only will you get better at working positively and productively to deliver ambitious and successful outcomes, but you will be working towards one aspect of life's highest pursuit, summarised and inscribed on the Temple of Apollo at Delphi: "know thyself".

- 1. To complete these questions, as important as your answer, is checking your answer against the mark scheme.
- 2. For each page or group of 10 questions, convert your mark score into a percentage. This will allow you to see (and feel) your progress as you get more experience and understanding with each topic.
- 3. Multiple choice questions, done carefully where you explain and show yourself your thinking using written notes as you move through each question, can be more useful than just Paper 2 for students aiming for a C or B grade. Paper 2 should be the larger focus for students aiming for A and A* grades, however.

¹ **DO NOT** work on these higher levels of completion in your A2 year unless you have also achieved at least a "**Silver**" (25%) in the same topic in **Paper 2**, which is **MOST** of your **AS grade**, and Paper 3 which is a smaller part of your year but still important.

www.**SmashingScience.org**Patrick Brannac

Page **1** of **13**

- 4. If you find you get a higher percentage answering short answer questions than multiple choice questions that often means you are NOT using the marking scheme correctly; your correct answer might not be fully complete for all the marks you are awarding. The marks easiest to miss rely on providing the largest amount of detail.
- 2 Atoms, molecules and stoichiometry

2.1 Relative masses of atoms and molecules

Learning outcomes

Candidates should be able to:

- 1 define the unified atomic mass unit as one twelfth of the mass of a carbon-12 atom
- 2 define relative atomic mass, A_r, relative isotopic mass, relative molecular mass, M_r, and relative formula mass in terms of the unified atomic mass unit

2.2 The mole and the Avogadro constant

Learning outcomes

Candidates should be able to:

1 define and use the term mole in terms of the Avogadro constant

2.3 Formulae

Learning outcomes

Candidates should be able to:

- 1 write formulae of ionic compounds from ionic charges and oxidation numbers (shown by a Roman numeral), including:
 - (a) the prediction of ionic charge from the position of an element in the Periodic Table
 - (b) recall of the names and formulae for the following ions: NO_3^- , CO_3^{2-} , SO_4^{2-} , OH^- , NH_4^+ , Zn^{2+} , Ag^+ , HCO_3^- , PO_4^{3-}
- (a) write and construct equations (which should be balanced), including ionic equations (which should not include spectator ions)
 - (b) use appropriate state symbols in equations
- 3 define and use the terms empirical and molecular formula
- 4 understand and use the terms anhydrous, hydrated and water of crystallisation
- 5 calculate empirical and molecular formulae, using given data

2.4 Reacting masses and volumes (of solutions and gases)

Learning outcomes

Candidates should be able to:

- 1 perform calculations including use of the mole concept, involving:
 - (a) reacting masses (from formulae and equations) including percentage yield calculations
 - (b) volumes of gases (e.g. in the burning of hydrocarbons)
 - (c) volumes and concentrations of solutions
 - (d) limiting reagent and excess reagent

(When performing calculations, candidates' answers should reflect the number of significant figures given or asked for in the question. When rounding up or down, candidates should ensure that significant figures are neither lost unnecessarily nor used beyond what is justified (see also Mathematical requirements section).)

(e) deduce stoichiometric relationships from calculations such as those in 2.4.1 (a)–(d)

Q# 6 2		Chemistry/2022/ cture R consists		•		_	_	:0)
		at is the minimuture R?	ım n	umber of mole	s of c	oxygen molecul	es ne	eeded for complete combustion of
	Α	6.5	В	7	С	10	D	20
Q# 6	6/ AS	Chemistry/2022/	/w/TZ	1/Paper 1/Q# 1/	//wwv	v.SmashingScienc	e.org	:0)
1		ich sample con 5g of chlorine?	tains	the same nun	nber	of the named s	pecie	es as the number of molecules in
	Α	atoms in 16g o	of sul	fur				
	В	atoms in 23 g	of soc	dium				
	С	ions in 74.5 g o	of pot	assium chlorid	e			
	D	molecules in 8	8 g o	f carbon dioxid	е			
Q# 6 4	A s	S Chemistry/2022, student reacts per(II) nitrate, 2	1m	ol of copper	with	concentrated	nitr	ic acid to produce 1 mol of
	Sub	stance X does r	ot co	ontain copper o	r hyd	rogen.		
	Wha	at could be subs	tance	e X?				
	Α	N ₂	В	N ₂ O	С	NO	D	NO ₂
Q# 6	8/ AS	Chemistry/2022	s/TZ	1/Paper 1/Q# 16	//ww\	w.SmashingSciend	ce.org	:0)
16		.0 g sample of N duced is 600 cm		O ₃ powder is s	tirred	into 50 cm ³ of	1.0 m	noldm ⁻³ HC1. The volume of CO ₂
		Na	2CO3	(s) + 2HC1(ac	1) →	2NaCl(aq) +	CO ₂ (g) + H2O(I)
	[<i>M</i> _r :	Na ₂ CO ₃ , 106.0]					
	Whi 1.0 i	ch volume of moldm ⁻³ HC <i>l</i> un	CO ₂	is produced he same condi	if 1 tions'	.0g of Na₂CO ?	₃ po	wder is stirred into 50 cm ³ of
	Α	600 cm ³	В	452 cm ³	С	226 cm ³	D	200 cm ³
Q# 6	9/ AS	Chemistry/2022	m/TZ	2/Paper 1/Q# 3,	//wwv	v.SmashingScienc	e.org	:0)
3	Co	mpound X con	tains	the elements	C, H	l and O only.		
	2.0	00 g of X produ	ces 4	1.00 g of carbo	n dio	oxide and 1.63	g of v	water when completely combusted.
	WI	hat is the empir	ical	formula of X?				

Q# 70/ AS Chemistry/2022/m/TZ 2/Paper 1/Q# 14//www.SmashingScience.org:o)

- 14 Which statement about atoms and molecules is correct?
 - A The molecular formula of a compound is the simplest whole number ratio of atoms of each element in the compound.
 - B One mole of any substance contains 6×10^{23} atoms.
 - C The relative atomic mass of an element is the ratio of the average mass of one atom of the element to the mass of an atom of carbon-12.
 - D The relative formula mass of a compound is the sum of the individual atomic masses of all the atoms in the formula.

Q# 71/ AS Chemistry/2021/w/TZ 1/Paper 1/Q# 2//www.SmashingScience.org :o)

2 2.0 g of ammonium nitrate, NH₄NO₃, decomposes to give 0.90 g of water and a single gas.

What is the identity of the gas?

A NO B NO_2 C N_2O D N_2

Q# 72/ AS Chemistry/2021/m/TZ 2/Paper 1/Q# 4//www.SmashingScience.org:o)

Originally, chemists thought indium oxide had the formula InO. By experiment they showed that 4.8 g of indium combined with 1.0 g of oxygen to produce 5.8 g of indium oxide. The A_r of oxygen was known to be 16.

Which value for the A_r of indium is calculated using these data?

A 38 B 77 C 115 D 154

Q# 73/ AS Chemistry/2021/m/TZ 2/Paper 1/Q# 3//www.SmashingScience.org:o)

3 Substance Q is a hydrocarbon. When 1.00 g of Q is completely burned, 3.22 g of carbon dioxide is produced.

What could be the identity of Q?

- A cyclohexene
- B cyclopentane
- C ethene
- D pentane

Q# 74/ AS Chemistry/2020/w/TZ 1/Paper 1/Q# 2//www.SmashingScience.org :0)

2 Strontium metal can be extracted from strontium oxide, SrO, by reduction with aluminium. One of the possible reactions is shown.

$$6SrO + 2Al \rightarrow 3Sr + Sr_3Al_2O_6$$

What is the maximum mass of strontium metal that can be produced from the reduction of 100 g of strontium oxide using this reaction?

- A 41.3 g
- **B** 42.3 g
- C 84.6 g
- **D** 169.2g

Q# 75/ AS Chemistry/2020/s/TZ 1/Paper 1/Q# 13//www.SmashingScience.org:o)

13 6.90 g of an ammonium salt is heated with an excess of aqueous sodium hydroxide. The volume of ammonia produced, measured under room conditions, is 2.51 dm³.

Which ammonium salt is used?

- A ammonium carbonate ($M_r = 96.0$)
- **B** ammonium chloride ($M_r = 53.5$)
- **C** ammonium nitrate ($M_r = 80.0$)
- **D** ammonium sulfate ($M_r = 132.1$)

Q# 76/ AS Chemistry/2020/s/TZ 1/Paper 1/Q# 11//www.SmashingScience.org:o)

11 A sample of solid ammonium chloride decomposes on heating.

solid ammonium chloride → ammonia gas + hydrogen chloride gas

A total of 2.4×10^{21} molecules of gas is formed.

How many hydrogen atoms are present in the gaseous products?

- A 1.2×10^{21}
- **B** 2.4×10^{21}
- $C 4.8 \times 10^{21}$
- D 9.6×10^{21}

Q# 77/ AS Chemistry/2020/m/TZ 2/Paper 1/Q# 7//www.SmashingScience.org:o)

7 Sodium azide, NaN₃, decomposes as shown.

$$2NaN_3 \rightarrow 2Na + 3N_2$$

Which volume of nitrogen, measured at room temperature and pressure, will be produced by the decomposition of 150 g of sodium azide?

- A 166 dm³
- **B** 83 dm³
- C 55 dm³
- D 37 dm³

Q# 78/ AS Chemistry/2019/w/TZ 1/Paper 1/Q# 2//www.SmashingScience.org :o)

2 Diamond is a pure form of carbon. The mass of a diamond can be measured in carats. One carat is 0.200 g of carbon.

Which expression gives the number of carats that contain 6.02×10^{23} carbon atoms?

- A 0.200 × 12.0
- B 0.200 12.0
- c 12.0 0.200
- $D = \frac{0.200}{6.02 \times 10^{23}} \times 12.0$

Q# 79/ AS Chemistry/2019/s/TZ 1/Paper 1/Q# 3//www.SmashingScience.org :0)

3 A washing powder contains sodium hydrogencarbonate, NaHCO₃, as one of the ingredients.

In a titration, a solution containing 1.00 g of this washing powder requires 7.15 cm³ of 0.100 mol dm⁻³ sulfuric acid for complete reaction. The sodium hydrogencarbonate is the only ingredient that reacts with the acid.

What is the percentage by mass of sodium hydrogencarbonate in the washing powder?

- A 3.0%
- **B** 6.0%
- C 12.0%
- D 24.0%

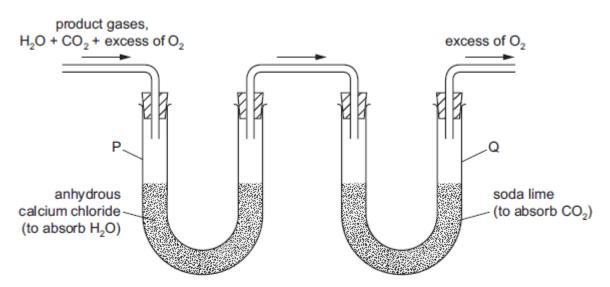
Q# 80/ AS Chemistry/2019/s/TZ 1/Paper 1/Q# 12//www.SmashingScience.org:o)

12 1.15 g of a metallic element needs 300 cm³ of oxygen for complete reaction, under room conditions, to form an oxide which contains O²⁻ ions.

What could be the identity of this metallic element?

- A calcium
- B magnesium
- C potassium
- D sodium

Q# 81/ AS Chemistry/2019/m/TZ 2/Paper 1/Q# 2//www.SmashingScience.org:o)


2 A 3.7 g sample of copper(II) carbonate is added to 25 cm³ of 2.0 mol dm⁻³ hydrochloric acid.

Which volume of gas is produced under room conditions?

- A 0.60 dm³
- **B** 0.72 dm³
- C 1.20 dm³
- D 2.40 dm³

Q# 82/ AS Chemistry/2018/w/TZ 1/Paper 1/Q# 3//www.SmashingScience.org:o)

3 A sample of the hydrocarbon C₆H₁₂ is completely burned in dry oxygen and the product gases are collected as shown.

The increases in mass of the collecting vessels P and Q are M_P and M_Q , respectively.

What is the ratio M_P/M_Q ?

- A 0.41
- **B** 0.82
- C 1.2
- D 2.4

Q# 83/ AS Chemistry/2018/s/TZ 1/Paper 1/Q# 3//www.SmashingScience.org:o)

- 3 Which fuel would produce the largest mass of CO₂ when 10 kg of the fuel undergo complete combustion?
 - A biodiesel, C₁₇H₃₄O₂
 - B ethanol, C₂H₆O
 - C octane, C₈H₁₈
 - D propane, C₃H₈

Q# 84/ AS Chemistry/2018/m/TZ 2/Paper 1/Q# 5//www.SmashingScience.org:o)

- 5 Which mass of solid residue is obtained from the thermal decomposition of 4.10 g of anhydrous calcium nitrate?
 - A 0.70g
- **B** 1.00 g
- C 1.40 g
- D 2.25g

Q# 85/ AS Chemistry/2018/m/TZ 2/Paper 1/Q# 31//www.SmashingScience.org:o)

The responses A to D should be selected on the basis of

Α	В	С	D
1, 2 and 3	1 and 2	2 and 3 only are correct	1 only
are	only are		is
correct	correct		correct

31 Compound Q contains 40% carbon by mass.

What could Q be?

- 1 glucose, C₆H₁₂O₆
- 2 starch, (C₆H₁₀O₅)_n
- 3 sucrose, C₁₂H₂₂O₁₁

Q# 86/ AS Chemistry/2017/w/TZ 1/Paper 1/Q# 32//

The responses A to D should be selected on the basis of

Α	В	С	D
1, 2 and 3 are correct	1 and 2 only are correct	2 and 3 only are correct	1 only is correct

32 A student makes sodium chloride by reacting together 0.025 mol of sodium carbonate with an excess of 0.2 mol dm⁻³ hydrochloric acid.

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$$

Which statements about the quantities of substance are correct?

- 1 600 cm³ of carbon dioxide are produced at room temperature and pressure.
- 2 250 cm³ of the hydrochloric acid are needed to exactly neutralise the sodium carbonate.
- 3 1.46 g of sodium chloride are produced.

Q# 87/ AS Chemistry/2017/w/TZ 1/Paper 1/Q# 16//

- 16 Which fertiliser contains the greatest percentage of nitrogen by mass?
 - A ammonium nitrate, NH₄NO₃
 - B ammonium sulfate, (NH₄)₂SO₄
 - C diammonium hydrogen phosphate, (NH₄)₂HPO₄
 - D urea, CO(NH₂)₂

Q# 88/ AS Chemistry/2017/w/TZ 1/Paper 1/Q# 1//

- 1 Which formula represents the empirical formula of a compound?
 - A C₂H₄O
- B C₂H₄O₂
- C C₆H₁₂
- D H₂O₂

Q# 89/ AS Chemistry/2017/s/TZ 1/Paper 1/Q# 3//www.SmashingScience.org:o)

3 A sports medal has a total surface area of 150 cm². It was evenly coated with silver by electrolysis. Its mass increased by 0.216 g.

How many atoms of silver were deposited per cm² on the surface of the medal?

A 8.0×10^{18}

B 1.8×10^{19}

C 8.7×10^{20}

D 1.2×10^{21}

Q# 90/ AS Chemistry/2017/s/TZ 1/Paper 1/Q# 2//www.SmashingScience.org:o)

2 The mass spectrum of a sample of lithium shows that it contains two isotopes, ⁶Li and ⁷Li.

The isotopic abundances are shown in the table.

isotope	isotopic abundance
⁶ Li	7.42%
⁷ Li	92.58%

What is the relative atomic mass of this sample of lithium, given to three significant figures?

A 6.07

B 6.50

C 6.90

D 6.93

Q# 91/ AS Chemistry/2017/m/TZ 2/Paper 1/Q# 2//www.SmashingScience.org:o)

2 Compounds J and K each contain 40% carbon by mass.

What could J and K be?

	J	К
Α	a hexose, C ₆ H ₁₂ O ₆	starch, (C ₆ H ₁₀ O ₅) _n
В	a pentose, C ₅ H ₁₀ O ₅	a hexose, C ₆ H ₁₂ O ₆
С	a pentose, C ₅ H ₁₀ O ₅	sucrose, C ₁₂ H ₂₂ O ₁₁
D	starch, (C ₆ H ₁₀ O ₅) _n	sucrose, C ₁₂ H ₂₂ O ₁₁

Q# 92/ AS Chemistry/2016/w/TZ 1/Paper 1/Q# 12//www.SmashingScience.org :0)

12 1.15 g of a metallic element needs 300 cm³ of oxygen for complete reaction, at 298 K and 1 atm pressure, to form an oxide which contains O²⁻ ions.

What could be the identity of this metallic element?

A calcium

B magnesium

C potassium

D sodium

Q# 93/ AS Chemistry/2016/s/TZ 1/Paper 1/Q# 3//www.SmashingScience.org:0)

3 Tetraethyl lead, Pb(C₂H₅)₄, has been used as a petrol additive.

What is the percentage by mass of carbon in tetraethyl lead?

A 10.2

B 14.9

C 29.7

D 32.0

Q# 94/ AS Chemistry/2015/w/TZ 1/Paper 1/Q# 3//www.SmashingScience.org:o)

Use of the Data Booklet is relevant to this question.

The compound S₂O₇ is hydrolysed by water to produce sulfuric acid and oxygen only.

Which volume of oxygen, measured at room temperature and pressure, is evolved when 0.352g of S2O7 is hydrolysed?

A 12 cm³

B 24 cm³

C 48 cm³

D 96 cm³

Q# 95/ AS Chemistry/2014/w/TZ 1/Paper 1/Q# 6//www.SmashingScience.org:o)

Aluminium carbide, Al₄C₃, reacts readily with aqueous sodium hydroxide. The two products of the reaction are NaAIO2 and a hydrocarbon. Water molecules are also involved as reactants.

What is the formula of the hydrocarbon?

A CH₄

B C₂H₆

C C₃H₈

D C6H12

Q# 96/ AS Chemistry/2013/w/TZ 1/Paper 1/Q# 8//www.SmashingScience.org:o)

Use of the Data Booklet is relevant to this question.

The approximate percentage composition of the atmosphere on four different planets is given in the table below.

The density of a gas may be defined as the mass of 1 dm³ of the gas measured at s.t.p.

Which mixture of gases has the greatest density?

0	planet	major gases / % by number of molecules
A	Jupiter	H ₂ 89.8, He 10.2
В	Neptune	H ₂ 80.0, He19.0, CH ₄ 1.0
C	Saturn	H ₂ 96.3, He3.25, CH ₄ 0.45
D	Uranus	H ₂ 82.5, He 15.2, CH ₄ 2.3

Q# 97/ AS Chemistry/2013/w/TZ 1/Paper 1/Q# 10//www.SmashingScience.org :o)

10 Use of the Data Booklet is relevant to this question.

Which sodium compound contains 74.2 % by mass of sodium?

- A sodium carbonate
- B sodium chloride
- C sodium hydroxide
- D sodium oxide

Q# 98/ AS Chemistry/2012/w/TZ 1/Paper 1/Q# 17//www.SmashingScience.org:o)

17 Use of the Data Booklet is relevant to this question.

1.15 g of a metallic element reacts with 300 cm³ of oxygen at 298 K and 1 atm pressure, to form an oxide which contains O²⁻ ions.

What could be the identity of the metal?

- A calcium
- B magnesium
- C potassium
- D sodium

Q# 99/ AS Chemistry/2012/s/TZ 1/Paper 1/Q# 14//www.SmashingScience.org:o)

14 Use of the Data Booklet is relevant to this question.

The reaction between aluminium powder and anhydrous barium nitrate is used as the propellant in some fireworks. The metal oxides and nitrogen are the only products.

Which volume of nitrogen, measured under room conditions, is produced when 0.783 g of anhydrous barium nitrate reacts with an excess of aluminium?

A 46.8 cm³

B 72.0 cm³

C 93.6 cm³

D 144 cm³

Q# 100/ AS Chemistry/2011/s/TZ 1/Paper 1/Q# 33//www.SmashingScience.org:o)

The responses A to D should be selected on the basis of

Α	В	С	D
1, 2 and 3	1 and 2	2 and 3 only are correct	1 only
are	only are		is
correct	correct		correct

33 Use of the Data Booklet is relevant to this question.

Zinc reacts with hydrochloric acid according to the following equation.

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

Which statements are correct?

[All volumes are measured at room conditions.]

- 1 A 3.27 g sample of zinc reacts with an excess of hydrochloric acid to give 0.050 mol of zinc chloride.
- 2 A 6.54 g sample of zinc reacts completely with exactly 100 cm³ of 1.00 mol dm⁻³ hydrochloric acid.
- 3 A 13.08 g sample of zinc reacts with an excess of hydrochloric acid to give 9.60 dm³ of hydrogen.

		AS Chemistry/2010/w/TZ 1/Paper 1/Q# 5//www.SmashingScience.org :o)				
5	Use of the Data Booklet is relevant to this question.					
	Nickel makes up 20 % of the total mass of a coin. The coin has a mass of 10.0 g.					
	Hov	v many nickel atoms are in the coin?				
	Α	2.05×10^{22} B 4.30×10^{22} C 1.03×10^{23} D 1.20×10^{24}				
	Can	AS Chemistry/2010/w/TZ 1/Paper 1/Q# 12//www.SmashingScience.org :o) nphor is a white solid which was used to make the early plastic celluloid. Camphor contains same percentage by mass of hydrogen and oxygen.				
	Wha	at is the molecular formula of camphor?				
Q# 1		$C_{10}H_6O_6$ B $C_{10}H_8O$ C $C_{10}H_{16}O$ D $C_{10}H_{10}O_2$ AS Chemistry/2010/s/TZ 1/Paper 1/Q# 9//www.SmashingScience.org :o)				
9		ich mass of gas would occupy a volume of 3 dm³ at 25 °C and 1 atmosphere pressure? nol of gas occupies 24 dm³ at 25 °C and 1 atmosphere pressure.]				
	Α	3.2g O ₂ gas				
	В	5.6g N ₂ gas				
	С	8.0g SO ₂ gas				
	D	11.0 g CO₂ gas				
Q# 1 8		AS Chemistry/2010/s/TZ 1/Paper 1/Q# 8//www.SmashingScience.org :o) e of the Data Booklet is relevant to this question.				
		20 g of a Group II metal, \mathbf{X} , reacts with an excess of chlorine to form 5.287 g of a compound formula \mathbf{X} C l_2 .				
	Wh	at is metal X?				
	Α	barium				
	В	calcium				
	С	magnesium				
	D	strontium				
Q# 1 2	0.2	AS Chemistry/2009/w/TZ 1/Paper 1/Q# 2//www.SmashingScience.org :o) 00 mol of a hydrocarbon undergo complete combustion to give 35.2 g of carbon dioxide and 4 g of water as the only products.				

,

What is the molecular formula of the hydrocarbon?

A C₂H₄

B C₂H₆

C C₄H₄

D C₄H₈

Q# 106/ AS Chemistry/2009/s/TZ 1/Paper 1/Q# 2//www.SmashingScience.org:o)

2 A household bleach contains sodium chlorate(I), NaCIO, as its active ingredient. The concentration of NaCIO in the bleach can be determined by reacting a known amount with aqueous hydrogen peroxide, H₂O₂.

$$NaClO(aq) + H_2O_2(aq) \rightarrow NaCl(aq) + O_2(g) + H_2O(l)$$

When 25.0 cm³ of bleach is treated with an excess of aqueous H₂O₂, 0.0350 mol of oxygen gas is given off.

What is the concentration of NaCIO in the bleach?

- A $8.75 \times 10^{-4} \, \text{moldm}^{-3}$
- B 0.700 moldm⁻³
- C 0.875 moldm⁻³
- D 1.40 moldm⁻³

Q# 107/ AS Chemistry/2009/s/TZ 1/Paper 1/Q# 1//www.SmashingScience.org :0)

1 Use of the Data Booklet is relevant to this question.

In leaded petrol there is an additive composed of lead, carbon and hydrogen only. This compound contains 29.7 % carbon and 6.19 % hydrogen by mass.

16

What is the value of x in the empirical formula PbC₈H_x?

Mark Scheme

A 5

Q# 65/ AS Chemistry/2022/w/TZ 1/Paper 1/Q#

2//www.SmashingScience.org :o)

2 C

Q# 66/ AS Chemistry/2022/w/TZ 1/Paper 1/Q#

1//www.SmashingScience.org :o)

1 A

Q# 67/ AS Chemistry/2022/s/TZ 1/Paper 1/Q#

4//www.SmashingScience.org:0)

4 D

Q# 68/ AS Chemistry/2022/s/TZ 1/Paper 1/Q#

16//www.SmashingScience.org:o)

16 C

Q# 69/ AS Chemistry/2022/m/TZ 2/Paper 1/Q#

3//www.SmashingScience.org:o)

3 C

Q# 70/ AS Chemistry/2022/m/TZ 2/Paper 1/Q#

14//www.SmashingScience.org :o)

14 D

Q# 71/ AS Chemistry/2021/w/TZ 1/Paper 1/Q#

2//www.SmashingScience.org:0)

2 C

D 20

Q# 72/ AS Chemistry/2021/m/TZ 2/Paper 1/Q#

4//www.SmashingScience.org :o)

4 B

Q# 73/ AS Chemistry/2021/m/TZ 2/Paper 1/Q#

3//www.SmashingScience.org:0)

3 A

Q# 74/ AS Chemistry/2020/w/TZ 1/Paper 1/Q#

2//www.SmashingScience.org :0)

2 B

Q# 75/ AS Chemistry/2020/s/TZ 1/Paper 1/Q#

13//www.SmashingScience.org:0)

13 E

Q# 76/ AS Chemistry/2020/s/TZ 1/Paper 1/Q#

11//www.SmashingScience.org:0)

11 C

Q# 77/ AS Chemistry/2020/m/TZ 2/Paper 1/Q#

7//www.SmashingScience.org :o)

7 B

Q# 78/ AS Chemistry/2019/w/TZ 1/Paper 1/Q#

2//www.SmashingScience.org :o)

2 C

Q# 79/ AS Chemistry/2019/s/TZ 1/Paper 1/Q#

3//www.SmashingScience.org :o)

3 0

Q# 80/ AS Chemistry/2019/s/TZ 1/Paper 1/Q#	Q# 94/ AS Chemistry/2015/w/TZ 1/Paper 1/Q#
12//www.SmashingScience.org :o)	3//www.SmashingScience.org :o)
12 D	3 B
Q# 81/ AS Chemistry/2019/m/TZ 2/Paper 1/Q#	Q# 95/ AS Chemistry/2014/w/TZ 1/Paper 1/Q#
2//www.SmashingScience.org :o)	6//www.SmashingScience.org :o)
2 A	Q# 96/ AS Chemistry/2013/w/TZ 1/Paper 1/Q#
Q# 82/ AS Chemistry/2018/w/TZ 1/Paper 1/Q#	8//www.SmashingScience.org :o)
3//www.SmashingScience.org :o)	8 D
3 A	Q# 97/ AS Chemistry/2013/w/TZ 1/Paper 1/Q#
Q# 83/ AS Chemistry/2018/s/TZ 1/Paper 1/Q#	10//www.SmashingScience.org :o)
3//www.SmashingScience.org :o)	10 D
3 C	Q# 98/ AS Chemistry/2012/w/TZ 1/Paper 1/Q#
0# 94/ AS Chamistry/2019/m/T7 2/Paper 1/0#	17//www.SmashingScience.org :o)
Q# 84/ AS Chemistry/2018/m/TZ 2/Paper 1/Q# 5//www.SmashingScience.org :o)	17 D
5 C	
	Q# 99/ AS Chemistry/2012/s/TZ 1/Paper 1/Q# 14//www.SmashingScience.org:o)
Q# 85/ AS Chemistry/2018/m/TZ 2/Paper 1/Q#	14 B
31//www.SmashingScience.org :o)	
31 D O# 96 / AS Chamistry/2017/w/T7 1/Danar 1/0# 22 //	Q# 100/ AS Chemistry/2011/s/TZ 1/Paper 1/Q# 33//www.SmashingScience.org:o)
Q# 86/ AS Chemistry/2017/w/TZ 1/Paper 1/Q# 32//	33 D
32 B	Q# 101/ AS Chemistry/2010/w/TZ 1/Paper 1/Q#
Q# 87/ AS Chemistry/2017/w/TZ 1/Paper 1/Q# 16//	5//www.SmashingScience.org:o)
16 D	5 A
Q# 88/ AS Chemistry/2017/w/TZ 1/Paper 1/Q# 1//	Q# 102/ AS Chemistry/2010/w/TZ 1/Paper 1/Q#
	12//www.SmashingScience.org :o)
1 A	12 C
Q# 89/ AS Chemistry/2017/s/TZ 1/Paper 1/Q#	Q# 103/ AS Chemistry/2010/s/TZ 1/Paper 1/Q#
3//www.SmashingScience.org :o)	9//www.SmashingScience.org :o)
3 A	9 C
Q# 90/ AS Chemistry/2017/s/TZ 1/Paper 1/Q#	Q# 104/ AS Chemistry/2010/s/TZ 1/Paper 1/Q#
2//www.SmashingScience.org :o) 2 D	8//www.SmashingScience.org :o)
I .	8 D
Q# 91/ AS Chemistry/2017/m/TZ 2/Paper 1/Q#	Q# 105/ AS Chemistry/2009/w/TZ 1/Paper 1/Q#
2//www.SmashingScience.org :o)	2//www.SmashingScience.org :o)
2 B	2 D
Q# 92/ AS Chemistry/2016/w/TZ 1/Paper 1/Q#	Q# 106/ AS Chemistry/2009/s/TZ 1/Paper 1/Q#
12//www.SmashingScience.org :o)	2//www.SmashingScience.org :o)
12 D	2 D
Q# 93/ AS Chemistry/2016/s/TZ 1/Paper 1/Q#	Q# 107/ AS Chemistry/2009/s/TZ 1/Paper 1/Q#
3//www.SmashingScience.org :o)	1//www.SmashingScience.org :o)
3 C	

