
Topic 1 HIGHER Level

Summer & Winter Papers Summer 1999 to Summer 2013

,

Topic Exam Statistics (Paper 2):

Section	Marks	% of All Marks	Last four exams marks	Last four exams %
Α	163/1080	15%	/160	%
В	25/2700	1%	/400	%
TOTAL	188/3780	5%	/560	%

Total number of papers represented here is 27, each with 40 marks of Section A and 100 marks of section B (4 questions from which you chose to answer only 2)

Page 1 of 44

IB HL 1 Paper 2 s99 to s13 incl W

HL SECTION A 12w

- Two groups of students (Group A and Group B) carried out a project* on the chemistry of some group 7 elements (the halogens) and their compounds.
 - (a) In the first part of the project, the two groups had a sample of iodine monochloride (a corrosive brown liquid) prepared for them by their teacher using the following reaction.

$$I_2(s) + Cl_2(g) \rightarrow 2ICl(l)$$

The following data were recorded.

Mass of I ₂ (s)	10.00 g
Mass of Cl ₂ (g)	2.24 g
Mass of IC1(1) obtained	8.60 g

(i)	State the number of significant figures for the masses of $I_2(s)$ and $IC1(1)$.	[1]
	I ₂ (s):	
	IC1(1):	
(ii)	The iodine used in the reaction was in excess. Determine the theoretical yield, in g, of $IC1(1)$.	[3]

Page 2 of 44

(iii)	(Ca	a1	cı	ıl	at	e	tŀ	ıe	p	e	rc	e	nt	ta	ge	3	yi	e]	ld	0	f:	IC	21	(1).															[1
																					٠.																			 		
	,																			•					•	۰		•			•				•		•		۰	 		

HL SECTION A 12w

1

- Two groups of students (Group A and Group B) carried out a project* on the chemistry of some 1. group 7 elements (the halogens) and their compounds.
 - (a) In the first part of the project, the two groups had a sample of iodine monochloride (a corrosive brown liquid) prepared for them by their teacher using the following reaction.

$$I_2(s) + Cl_2(g) \rightarrow 2ICl(l)$$

The following data were recorded.

Mass of I ₂ (s)	10.00 g
Mass of Cl ₂ (g)	2.24 g
Mass of IC1(l) obtained	8.60 g

Page 3 of 44 PB (c) The students reacted IC1(l) with CsBr(s) to form a yellow solid, CsICl₂(s), as one of the products. CsICl₂(s) has been found to produce very pure CsCl(s) which is used in cancer treatment.

To confirm the composition of the yellow solid, Group A determined the amount of iodine in 0.2015 g of CsICl₂(s) by titrating it with 0.0500 mol dm⁻³ Na₂S₂O₃ (aq). The following data were recorded for the titration.

Mass of $CsICl_2(s)$ taken (in g ± 0.0001)	0.2015
Initial burette reading of $0.0500 \text{ mol dm}^{-3} \text{ Na}_2\text{S}_2\text{O}_3(\text{aq})$ (in cm ³ ± 0.05)	1.05
Final burette reading of $0.0500 \text{ mol dm}^{-3} \text{ Na}_2\text{S}_2\text{O}_3(\text{aq})$ (in cm ³ ± 0.05)	25.25

				• • • • •								• • • •	
i)	tate the v	volume,	in cm³, o	f 0.050	00 mo	l dm ⁻³ 1	Na ₂ S ₂ O) ₃ (aq) u	sed in	the tits	ration.		[1]
										• • • • •			

Page 4 of 44

(111)	Determine the amount, in mol, of $0.0500 \text{ mol dm}^{-3} \text{Na}_2\text{S}_2\text{O}_3$ (aq) added in the titration.	[1]
(iv)	The overall reaction taking place during the titration is:	
	$\mathrm{CsICl_2(s)} + 2\mathrm{Na_2S_2O_3(aq)} \rightarrow \mathrm{NaCl(aq)} + \mathrm{Na_2S_4O_6(aq)} + \mathrm{CsCl(aq)} + \mathrm{NaI(aq)}$	
	Calculate the amount, in mol, of iodine atoms, I, present in the sample of $CsICl_2(s)$.	[1]
(v)	Calculate the mass of iodine, in g, present in the sample of CsICl ₂ (s).	[1]
(vi)	Determine the percentage by mass of iodine in the sample of $CsICl_2(s)$, correct to three significant figures, using your answer from (v).	[1]
	•••••	

Page **5** of **44**

(d)	Group B heated the yellow solid, CsICl ₂ (s), which turned white and released a brown gas which condensed into a brown liquid.
	Group B identified the white solid as CsCl(s). Suggest the identity of the brown liquid. [1]

HL SECTION A 11w

Page 6 of 44

1. Airbags are an important safety feature in vehicles. Sodium azide, potassium nitrate and silicon dioxide have been used in one design of airbag.

[Source: www.hilalairbag.net]

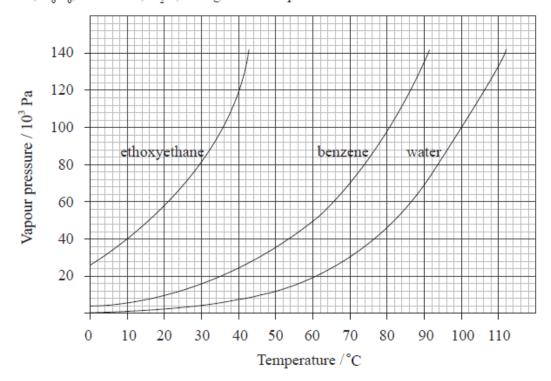
Sodium azide, a toxic compound, undergoes the following decomposition reaction under certain conditions.

$$2\text{NaN}_3(s) \rightarrow 2\text{Na}(s) + 3\text{N}_2(g)$$

Two students looked at data in a simulated computer-based experiment to determine the volume of nitrogen generated in an airbag.

Page **7** of **44**

(b) Using the simulation programme, the students entered the following data into the computer.


Temperature (T) / °C	Mass of NaN ₃ (s) (m) / kg	Pressure (p) / atm
25.00	0.0650	1.08

(i)	State the number of significant figures for the temperature, mass and pressure data.	[1]
	T:	
	<i>m</i> :	
	<i>p</i> :	
(ii)	Calculate the amount, in mol, of sodium azide present.	[1]
(iii)	Determine the volume of nitrogen gas, in dm ³ , produced under these conditions based on this reaction.	[4]
(iii)		[4]
(iii)	based on this reaction.	[4]
(iii)	based on this reaction.	[4]
(iii)	based on this reaction.	[4]
(iii)	based on this reaction.	[4]
(iii)	based on this reaction.	[4]
(iii)	based on this reaction.	[4]

HL SECTION A 11s

Page 8 of 44

5. The graph below illustrates how the vapour pressures of ethoxyethane, CH₃CH₂OCH₂CH₃, benzene, C₆H₆, and water, H₂O, change with temperature.

(a) Using data from the graph, explain the difference in vapour pressure of ethoxyethane, benzene and water at 30 °C.

[4]

	• • • • • •	 	
••••••		 	

(b)	Use the graph to determine the boiling point of benzene at standard pressure.					

HL SECTION A 09w NOT with Q1a

This balanced redox equation is needed to answer the question that follows:

Page **9** of **44**

$${\rm MnO_4}^-({\rm aq}) + 5{\rm Fe}^{2+}({\rm aq}) + 8{\rm H}^+({\rm aq}) \rightarrow {\rm Mn}^{2+}({\rm aq}) + 5{\rm Fe}^{3+}({\rm aq}) + 4{\rm H}_2{\rm O}\,({\rm l})$$

1. The data below is from an experiment used to determine the percentage of iron present in a sample of iron ore. This sample was dissolved in acid and all of the iron was converted to Fe²⁺. The resulting solution was titrated with a standard solution of potassium manganate(VII), KMnO₄. This procedure was carried out three times. In acidic solution, MnO₄⁻ reacts with Fe²⁺ ions to form Mn²⁺ and Fe³⁺ and the end point is indicated by a slight pink colour.

Titre	1	2	3
Initial burette reading / cm ³	1.00	23.60	10.00
Final burette reading / cm ³	24.60	46.10	32.50

Mass of iron ore / g	3.682×10 ⁻¹
${\bf Concentration~of~KMnO_4~solution~/~moldm^{-3}}$	2.152×10 ⁻²

	(c)	Calculate the amount, in moles, of MnO ₄ ⁻ used in the titration.	[2]
(d)	Calo	culate the amount, in moles, of Fe present in the 3.682×10^{-1} g sample of iron ore.	[2]
(e)	Dete	ermine the percentage by mass of Fe present in the 3.682×10 ⁻¹ g sample of iron ore.	[2]

HL SECTION A 08s

Page **10** of **44**

		of x in $Fe(NH_4)_2(SO_4)_2$. xH_2O can be found by determining the amount, in moles, of the compound.	
		sample was dissolved in water and excess BaCl ₂ (aq) was added. vitate of BaSO ₄ was separated and dried and found to weigh 1.17 g.	
(a)	Calc	ulate the amount, in moles of BaSO ₄ in the 1.17 g precipitate.	[2]
(b)		ulate the amount, in moles, of sulfate in the 0.982 g sample of $NH_4)_2(SO_4)_2$. xH_2O .	[1]
(c)	Calc	ulate the amount, in moles, of iron in the 0.982 g sample of $Fe(NH_4)_2(SO_4)_2$. xH_2O .	[1]
(d)		ermine the mass of the following present in the 0.982 g sample of $NH_4)_2(SO_4)_2$. xH_2O .	[3]
	(i)	Iron	
	(ii)	Ammonium	
	(iii)	Sulfate	

1.

Page **11** of **44**

(e)	Use your answer from part (d) to determine the amount, in moles, of water present i 0.982g sample of Fe(NH ₄) ₂ (SO ₄) ₂ . xH ₂ O.					
(f)	Det	ermine the a	mount, in moles, of Fe	$e(NH_4)_2(SO_4)_2$ and hen	ce the value of x .	[2]
HL SE	CTION	A 08s				
5.	Two	1.00 dm ³ con	ntainers A and B each co	ontain 2.00 g of the gas in	dicated at 25.0°C.	
	2,,,0	1.00 am 401		onan 2000 g or and gas in	2510 01	
				0		
			H ₂	O_2		
			A	В		
	(a)	Calculate th	ne pressure in container	В.		[3]
	(b)		hout calculation wheth in your answer.	er the pressure in A is his	gher or lower than container	[2]

Page 12 of 44 PB

HL SECTION A 07w

1.	 0.502 g of an alkali metal sulfate is dissolved in water and excess barium chloride so BaCl₂(aq) is added to precipitate all the sulfate ions as barium sulfate, BaSO₄(s). The prec is filtered and dried and weighs 0.672 g. 						
	(a)	Calculate the amount (in mol) of barium sulfate formed.	[2]				
	(b)	Determine the amount (in mol) of the alkali metal sulfate present.	[1]				
	(c)	Determine the molar mass of the alkali metal sulfate and state its units.	[2]				
	(d)	Deduce the identity of the alkali metal, showing your workings.	[2]				
	(e)	Write an equation for the precipitation reaction, including state symbols.	[2]				

HL SECTION A 07w

Page 13 of 44

cont	ains an equal mass of methane gas.	
(a)	Compare the average kinetic energy of oxygen molecules with those of methane molecules and explain your reasoning.	[2]
(b)	Identify whether oxygen or methane molecules will have the greater average velocity at this temperature and explain your choice.	[2]
(c)	Deduce whether the pressure in the flask containing methane is less than, greater than, or equal to, the pressure in the flask containing oxygen. Explain your choice.	[3]

Two flasks of equal volume are at the same temperature. One contains oxygen gas and the other

HL SECTION A 07s

3.

Page **14** of **44**

	$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$	
	Calculate the volume of carbon dioxide and water vapour produced and the volume of oxygen remaining, when 20.0 dm³ of propane reacts with 120.0 dm³ of oxygen. All gas volumes are measured at the same temperature and pressure.	[3]
(b)	State and explain what would happen to the pressure of a given mass of gas when its absolute temperature and volume are both doubled.	[3]

(a) Propane and oxygen react according to the following equation.

Page **15** of **44**

(c)	(i)	Crocetin consists of the elements carbon, hydrogen and oxygen. Determine the empirical formula of crocetin, if 1.00 g of crocetin forms 2.68 g of carbon dioxide and 0.657 g of water when it undergoes complete combustion.	[6]
	(ii)	Determine the molecular formula of crocetin given that 0.300 mole of crocetin has a mass of 98.5 g.	[2]

HL SECTION A 06w

Page **16** of **44**

1.	(a)		organic compound A contains 62.0 % by mass of carbon, 24.1 % by mass of nitrogen, emainder being hydrogen.	
		(i)	Determine the percentage by mass of hydrogen and the empirical formula of A.	[3]
		(ii)	Define the term relative molecular mass.	[2]
		(iii)	The relative molecular mass of ${\bf A}$ is 116. Determine the molecular formula of ${\bf A}$.	[1]
HL SE	CTION	A 06w		
2.	Meth	ıylami	ne can be manufactured by the following reaction.	
			$CH_3OH(g) + NH_3(g) \rightarrow CH_3NH_2(g) + H_2O(g)$	

Page **17** of **44**

(a)	ın tn	e manufacturing process 2000 kg of each feactant are mixed together.	
	(i)	Identify the limiting reactant, showing your working.	[2]
	(ii)	Calculate the maximum mass, in kg, of methylamine that can be obtained from this mixture of reactants.	[2]
HL SE	CTION	A 06s	
3.	The	reaction below represents the reduction of iron ore to produce iron.	
		$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$	
		ixture of 30 kg of Fe ₂ O ₃ and 5.0 kg of C was heated until no further reaction occurred ulate the maximum mass of iron that can be obtained from these masses of reactants	
	• • •		
	• • •		
	• • •		
	• • •		

HL SECTION A 05s

Page **18** of **44**

2.	The	percei	ntage composition by mass of a hydrocarbon is $C = 85.6 \%$ and $H = 14.4 \%$.	
	(a)	Calc	culate the empirical formula of the hydrocarbon.	[2]
	(b)		.00 g sample of the hydrocarbon at a temperature of 273 K and a pressure of $\times 10^5$ Pa (1.00 atm) has a volume of 0.399 dm ³ .	
		(i)	Calculate the molar mass of the hydrocarbon.	[2]
		(ii)	Deduce the molecular formula of the hydrocarbon.	[1]

HL SECTION A 04w

Page **19** of **44**

(a)	Write an equation for the reaction between sodium carbonate and hydrochloric acid.
(b)	Calculate the molar concentration of the sodium carbonate solution neutralized by the hydrochloric acid.
(c)	Determine the mass of sodium carbonate neutralized by the hydrochloric acid and hence the mass of sodium carbonate present in the 1.000 dm³ of solution.
Cal	culate the mass of water in the hydrated crystals and hence find the value of x .

HL SECTION A 04s

Page **20** of **44**

2.	100 cm ³ of ethene, C ₂ H ₄ , is burned in 400 cm ³ of oxygen, producing carbon dioxide and some li- water. Some oxygen remains unreacted.		
	(a)	Write the equation for the complete combustion of ethene.	[2]
	(b)	Calculate the volume of carbon dioxide produced and the volume of oxygen remaining.	[2]
HL SE	CTION	A 04s	
3.	(a)	Write an equation for the formation of zinc iodide from zinc and iodine.	[1]
	(b)	100.0 g of zinc is allowed to react with 100.0 g of iodine producing zinc iodide. Calculate the amount (in moles) of zinc and iodine, and hence determine which reactant is in excess.	[3]
	(c)	Calculate the mass of zinc iodide that will be produced.	[1]

HL SECTION A 03w

Page **21** of **44**

2.	(a)		eous XO ₄ ³⁻ ions form a precipitate with aqueous silver ions, Ag ⁺ . Write a balanced tion for the reaction, including state symbols.	[2]
	(b)		on 41.18 cm ³ of a solution of aqueous silver ions with a concentration of 0.2040 mol dm ⁻³ ded to a solution of XO ₄ ³⁻ ions, 1.172 g of the precipitate is formed.	
		(i)	Calculate the amount (in moles) of Ag ⁺ ions used in the reaction.	[1]
		(ii)	Calculate the amount (in moles) of the precipitate formed.	[1]
		(iii)	Calculate the molar mass of the precipitate.	[2]
		(iv)	Determine the relative atomic mass of X and identify the element.	[2]

HL SECTION A 02w

Page 22 of 44

An	An element X reacts with oxygen to form the oxide X_2O_3 .				
(a)	Write a balanced equation for the reaction.	[1]			
(b)	If 2.199 g of the oxide was obtained from 1.239 g of X, calculate the relative atomic mass of X and identify the element.	[5]			
(c)	Nitrogen also forms an oxide on reaction with oxygen. This oxide contains 25.9 % of nitrogen and 74.1 % of oxygen by mass. Calculate the empirical formula of this second oxide.	[3]			

HL SECTION A 02s

5.

Page 23 of 44

A stı	ident is asked to prepare some copper(II) intrate by reacting nitric acid with copper(II) oxide.	
(a)	Write a balanced equation for this reaction.	[1]
4.		
(b)	The student carries out this reaction by adding 0.0345 mol of copper(II) oxide to 36.0 cm ³ of 1.15 mol dm ⁻³ nitric acid solution. Calculate the amount (in mol) of nitric acid.	[1]
(c)	Use the information in (a) and (b) to identify the limiting reagent and determine the amount (in mol) of copper(II) nitrate formed.	[2]
(d)	The product of this reaction is isolated as copper(II) nitrate trihydrate. Calculate the molar mass of copper(II) nitrate trihydrate and the mass of product obtained.	[2]

HL SECTION A 01w

Page **24** of **44**

(a)	$2.036~{\rm g}$ of indigo was completely oxidised to produce $5.470~{\rm g}$ of carbon dioxide and $0.697~{\rm g}$ of water. Calculate:		
	(i)	the percentage by mass of carbon in indigo;	[2]
	(ii)	the percentage by mass of hydrogen in indigo.	[2]
(b)		the percentage by mass of nitrogen in the indigo sample is 10.75 %, determine the irical formula of indigo.	[3]
(c)	If th	e molar mass is approximately 260 g mol ⁻¹ , determine the molecular formula of indigo.	[2]

Indigo is a blue dye which contains only carbon, nitrogen, hydrogen and oxygen.

HL SECTION A 01w

2.

Page **25** of **44**

3.	This	question deals with gases and liquids.	
	(a)	The mass of a gas sample is measured under certain conditions. List the variables that must be measured and show how these can be used to determine the molar mass of the gas.	[4]
(c)	amo to a same	nall amount of a volatile liquid is added to a 50.0 cm ³ evacuated container. Twice the unt of the same liquid is added to a second 50.0 cm ³ evacuated container, and separately 100 cm ³ evacuated container. The three systems are allowed to reach equilibrium at the etemperature, and some liquid remains in each flask. Compare the pressure due to the our in the three containers and explain your answer.	[3]

HL SECTION A 01s

Page **26** of **44**

	Pt = 65.01 %, $C1 = 23.63$ %, $N = 9.340$ %, $H = 2.020$ %.	
	Calculate the empirical formula of Cisplatin. (Relative Atomic Masses are $Pt = 195.09$, $Cl = 35.45$, $N = 14.01$, $H = 1.01$.)	[3]
(b)	The molecular and empirical formulas of Cisplatin are the same. Analysis of the molecule shows platinum to be the central atom, being bonded to four separate atoms; the hydrogen is bonded to nitrogen. Draw a representation of the molecule.	[1]
(c)	16.20×10 ⁻³ dm ³ of 0.1020 moldm ⁻³ aqueous AgNO ₃ is added to 14.80×10 ⁻³ dm ³ of	
	0.1250 mol dm ⁻³ aqueous NaCl. Calculate the maximum mass (g) of AgCl which could be obtained from this reaction. (Relative Atomic Masses are Ag = 107.87, Cl = 35.45.)	[4]
		L · J
HL B 12w		
7		

(a) An anti-cancer drug called Cisplatin has the following percentage composition by mass:

2.

Page **27** of **44**

(i)	Determine the empirical formula of the ester, showing your working.
(ii)	The molar mass of the ester is 116.18 g mol ⁻¹ . Determine its molecular formula.

Page **28** of **44** РΒ

9

(c)	An important environmental consideration is the appropriate disposal of cleaning solve An environmental waste treatment company analysed a cleaning solvent, J , and four to contain the elements carbon, hydrogen and chlorine only. The chemical composi of J was determined using different analytical chemistry techniques.					
		Combustion Reaction:				
		Combustion of 1.30 g of J gave 0.872 g CO_2 and 0.089 g H_2O .				
		Precipitation Reaction with AgNO ₃ (aq):				
		$0.535~{ m g}$ of ${f J}$ gave $1.75~{ m g}$ AgCl precipitate.				
	(i)	Determine the percentage by mass of carbon and hydrogen in ${\bf J}$, using the combustion data.	[3]			
	(ii)	Determine the percentage by mass of chlorine in J, using the precipitation data.	[1]			

Page **29** of **44**

(iii)	The molar mass was determined to be 131.38 g mol ⁻¹ . Deduce the molecular formula of J .	[3]
L D 44	1-	
IL B 11	IS	
e e		
	gen monoxide may be removed from industrial emissions via a reaction with onia as shown by the equation below.	
	$4NH_3(g) + 6NO(g) \rightarrow 5N_2(g) + 6H_2O(l)$	
(iii)	30.0 dm³ of ammonia reacts with 30.0 dm³ of nitrogen monoxide at 100 °C. Identify which gas is in excess and by how much and calculate the volume of nitrogen produced.	[2]
IL B 06	5w	
, .		
(a)	(i) Gaseous compound = Methane	
(ii)	Calculate the volume that 0.0200 mol of the gaseous compound in (a)(i) would occupy at 70 °C and 1.10×10^5 Pa .	

Page **30** of **44** РΒ

IB HL 1 Paper 2 s99 to s13 incl W Mark Scheme

HL SECTION A 12w

(ii)
$$n(\text{Cl}_2) = \left(\frac{2.24}{2 \times 35.45}\right) = 0.0316/3.16 \times 10^{-2} \text{ (mol)};$$

Allow answers such as $3.2 \times 10^{-2}/0.032/3.15 \times 10^{-2}/0.0315 \text{ (mol)}.$

 $n(IC1) = 2 \times 0.0316 / 0.0632/6.32 \times 10^{-2} \text{ (mol)};$ Allow answers such as $6.4 \times 10^{-2}/0.064/6.3 \times 10^{-2}/0.063 \text{ (mol)}.$

$$m(IC1) = (0.0632 \times 162.35 =) 10.3 (g);$$
 [3]
Allow answers in range 10.2 to 10.4 (g).
Award [3] for correct final answer.

(iii)
$$\left(\frac{8.60}{10.3} \times 100 = \right) 83.5\%$$
; [1]

Allow answers in the range of 82.5 to 84.5%.

HL SECTION A 12w

1

(c) (i)
$$\left(\frac{126.90}{330.71} \times 100\right) = 38.4\%;$$
 [1]

(ii)
$$(25.25-1.05) = 24.20 \text{ (cm}^3)$$
; [1]
Accept 24.2 (cm³) but not 24 (cm³).

(iii)
$$\left(\frac{24.20 \times 5.00 \times 10^{-2}}{1000}\right) = 1.21 \times 10^{-3} / 0.00121 \text{(mol)};$$
 [1]

(iv)
$$(0.5 \times 1.21 \times 10^{-3}) = 6.05 \times 10^{-4} / 0.000605 \text{ (mol)};$$
 [1]
Accept alternate method e.g. $(0.384/126.9 \times 0.2015) = 6.10 \times 10^{-4} / 0.000610 \text{ (mol)}.$

(v)
$$(126.90 \times 6.05 \times 10^{-4}) = 7.68 \times 10^{-2} / 0.0768 (g);$$
 [1]
Accept alternate method e.g. $(6.10 \times 10^{-4} \times 126.9)$ or $(0.2015 \times 0.384) = 7.74 \times 10^{-2} / 0.00774 (g).$

(vi)
$$\left(\frac{7.68 \times 10^{-2}}{0.2015} \times 100\right) = 38.1\%;$$
 [1]

Answer must be given to three significant figures.

(d) ICl / iodine monochloride; [1]

Do not accept iodine or bromine.

PB

HL SECTION A 11w

Page **31** of **44**

(ii)
$$n = (65.0 / 65.02) = 1.00 \text{ (mol)}$$
; [1]
No penalty for using whole number atomic masses.

(iii)
$$n(N_2) = \left(\frac{3}{2} \times 1.00 = \right) 1.50 \text{ (mol)};$$

$$T = \left((25.00 + 273.15) = \right) 298.15 \text{ K} / (25.00 + 273) = 298 \text{ K};$$

$$p = 1.08 \times 1.01 \times 10^5 \text{ Pa} / 1.08 \times 1.01 \times 10^2 \text{ kPa} / 1.09 \times 10^5 \text{ Pa} / 1.09 \times 10^2 \text{ kPa};$$

$$V = \frac{nRT}{p} = \frac{(10^3)(1.50)(8.31)(298.15 / 298)}{(1.08 \times 1.01 \times 10^5)} = 34.1 \text{ (dm}^3);$$

$$Award \text{ [4] for correct final answer.}$$

$$Award \text{ [3 max] for 0.0341 (dm^3) or 22.7 (dm^3).}$$

$$Award \text{ [2 max] for 34.4 (dm^3).}$$

$$Award \text{ [2 max] for 0.0227 (dm^3).}$$

$$Award \text{ [2 max] for 0.0227 (dm^3).}$$

HL SECTION A 11s

5. (a) vapour pressure ethoxyethane (81×10³ Pa) > vapour pressure benzene (16×10³ Pa) > vapour pressure water (4×10³ Pa);

If three correct vapour pressure values related to each substance are stated alone award M1.

Allow range of $80-85\times10^3$ Pa, $14-18\times10^3$ Pa and $3-7\times10^3$ Pa.

Do not award mark for comparisons of just two substances.

water has hydrogen bonding;

Award [2 max] for 0.034 (dm^3) .

benzene has van der Waals'/London/dispersion forces;

ethoxyethane has dipole-dipole forces (and van der Waals'/London/dispersion) but they are weaker than benzene;

(b) 81 °C; Allow 80–82 °C.

[4]

HL SECTION A 09w

Page **32** of **44**

HL SECTION A 08s

 $\frac{1.50 \times 10^{-2}}{2.50 \times 10^{-3}} = 6 \, (\text{mol}) \, ;$

Award [2] for the correct final answer. Allow ECF throughout question one.

Page **33** of **44**

[2]

5. (a)
$$PV = nRT/P = \frac{nRT}{V}$$
;

$$P = \frac{2.00 \times 8.31 \times 298}{1.00 \times 32.0} / \frac{0.0625 \times 8.31 \times 298}{1.00} / \frac{0.0625 \times 0.0821 \times 298}{1.00} \, ;$$

$$P = 155 \text{ kPa} / 1.53 \text{ atm};$$

[3]

Apply -1(U) rule

Award [3] for final answer.

(b) higher (because M_r is lower); number of moles/particles/molecules is higher / more frequent collisions with the wall of the container:

[2]

HL SECTION A 07w

1. (a) $M(BaSO_4)(=137.34+32.06+4(16.00))=233.40 (g mol^{-1});$ Accept 233.4 but not 233

$$n (BaSO_4) \left(= \frac{0.672 \text{ g}}{233.40 \text{ g mol}^{-1}} \right) = 0.00288/2.88 \times 10^{-3} \text{ (mol)};$$
 [2]

ECF from M value

- (b) n (alkali metal sulfate) = $0.00288/2.88 \times 10^{-3}$ (mol); [1] ECF
- (c) $M = \left(\frac{m}{n} = \frac{0.502 \text{ g}}{0.00288 \text{ mol}} = \right) 174.31 / 174.3 / 174;$ ECFunits: g mol⁻¹; [2]
- (d) $(2(A_r) + 32 + 4(16) = 174$, thus) $A_r = 39 / A_r = \left(\frac{(174 (32 + (4 \times 16)))}{2}\right) = 39$; Accept answer between 38.9 and 39.2 ECF potassium / K; ECF from A_r value
- (e) K₂SO₄(aq) + BaCl₂(aq) → BaSO₄(s) + 2KCl (aq) [2] Award [1] for balanced equation and [1] for state symbols ECF if another alkali metal arrived at in (d) Accept net ionic equation If no answer arrived at in (d), but correct equation given involving any alkali metal, then award [1 max]

HL SECTION A 07w

Page **34** of **44**

3. (a) same (average kinetic energy); at same temperature/KE ∞ (absolute/Kelvin) temperature; [2] (b) methane / CH₄; $M_{\rm r}\left({\rm O}_{2}\right) = 32, M_{\rm r}\left({\rm CH}_{4}\right) = 16 \ / \ M_{\rm r}\left({\rm O}_{2}\right) > M_{\rm r}\left({\rm CH}_{4}\right) \ / \ M_{\rm r}\left({\rm CH}_{4}\right) < M_{\rm r}\left({\rm O}_{2}\right) \ / \ {\rm because}$ oxygen molecules are heavier than methane molecules / methane molecules are lighter than oxygen molecules / lighter methane gas has greater average velocity; [2] No second mark for any reference to bigger/smaller molecules (c) greater; [1] equal masses more moles/molecules (of gas); greater velocity; more frequent collisions (with walls of flask); [2 max]

HL SECTION A 07s

Page **35** of **44**

4. (a) $60.0 \text{ dm}^3 \text{ CO}_2$; $80.0 \text{ dm}^3 \text{ H}_2\text{O}$; $20.0 \text{ dm}^3 \text{ O}_2$; Apply - I(U).

(b) overall there will be no change to the pressure; double absolute temperature and the pressure doubles; double volume and the pressure halves; Apply ECF if points 2 and 3 are incorrect.

OR

Use PV = nRT, Since n and R are constant;

V and T are both doubled;

P will remain unchanged;

OR

OWTTE for mathematical interpretation

e.g. T α P, therefore 2P;

V α 1/P, therefore ½ P;

No change to P, $\frac{1}{2}$ P x 2 P = P;

[3]

(c) (i)
$$n(C)(=n(CO_2) = 2.68 \text{ g} \div 44.01 \text{ g mol}^{-1}) = 0.0609 \text{ mol};$$

 $n(H)(=2 \times n(H_2O) = 0.657 \text{ g} \div 18.02 \text{ g mol}^{-1}) = 0.0729 \text{ mol};$
 $m(C) = 0.0609 \text{ mol} \times 12.01 \text{ g mol}^{-1} = 0.731 \text{ g}$
 $and m(H) = 0.0729 \text{ mol} \times 1.01 \text{ g mol}^{-1} = 0.0736 \text{ g};$
 $m(O) = (1.00 - 0.731 - 0.0736)g = 0.195 \text{ g};$

empirical formula: C5H6O;

[6]

For C_5H_6 award [4 max].

Steps used to arrive at the correct amounts (in moles) are required for full marks.

(ii)
$$M(crocetin) = 98.5 \text{ g} \div 0.300 \text{ mol} = 328 \text{ (g mol}^{-1});$$

$$(\frac{328}{82.11} = 4)$$
molecular formula: $C_{20}H_{24}O_4$;
$$ECF from (c) (i).$$
[2]

HL SECTION A 06w

Page **36** of **44**

1. (a) (i)

$$\frac{C}{12.01}/5.16$$
 $\frac{N}{14.01}/1.72$ $\frac{13.9}{1.01}/13.8$

Award [2] for above.

No penalty for use of whole number atomic masses.

If atomic numbers used then only mark for % of H can be awarded.

If H % and calculation missing, award [1], and last mark cannot be scored.

If H % calculation incorrect apply ECF.

Correct empirical formula scores [3].

(ii) the average mass of a molecule;

compared to 1/12 of (the mass of) one atom of 12 C / compared to C-12 taken as 12;

OR

(iii)
$$C_6N_2H_{16}$$
; [1]

HL SECTION A 06w

2

(d) (i) moles of CH_3OH (= $2000 \times 10^3 \div 32.05$) = 6.24×10^4 (mol) and moles of NH_3 (= $2000 \times 10^3 \div 17.04$) = 1.17×10^5 (mol); Accept answers using whole-number A_r values.

Accept answers that do not include $\times 10^3$. methanol is limiting reactant; [2]

(ii) M_r of methylamine = 31.07 / 31;

mass
$$(=2000\times31.07 \div32.05) = 1940 \text{ (kg)};$$
 [2]

Accept answer in range 1930 to 1940.

Units not needed for mark, but penalise incorrect units and answers in g. Correct final answer scores [2].

HL SECTION A 06s

3.
$$n(Fe_2O_3) = 30 \times 10^3 \div 159.7 / n(Fe_2O_3) = 188 \text{ mol};$$

$$n(C) = 5.0 \times 10^3 \div 12.01 / n(C) = 416 \text{ mol};$$

Fe₂O₃ is the limiting reagent or implicit in calculation;

$$n(Fe) = 2 \times n(Fe, O_3) = 2 \times 188 = 376 \text{ mol};$$

$$m(Fe) = 376 \times 55.85 = 21 \text{ kg};$$

[5]

[3]

Accept 2sf or 3sf, otherwise use -1(SF).

Correct final answers score [5].

Allow ECF.

HL SECTION A 05s

Page **37** of **44**

2. (a) mole ratio
$$C: H = \frac{85.6}{12.01} : \frac{14.4}{1.01} = 7.13 : 14.3;$$

No penalty for using integer atomic masses.

(b) (i) number of moles of gas
$$n = \frac{PV}{RT} = \frac{1.01 \times 10^2 kPa (.399 \text{ dm}^3)}{8.314 \frac{J}{\text{mol K}} (273 \text{ K})} = 0.178 \text{ mol};$$

$$\frac{\text{mass}}{\text{mol}} = \frac{1.00g}{.017 \text{ mol}} = 56.3 \text{ (g mol}^{-1});$$
[2]

OR

molar mass is the
$$\frac{\text{mass of the molar volume}}{22.4 \text{ dm}^3}$$
 at STP;
= $\frac{1.00 \times 22.4}{0.399} = 56.1 \text{ (g mol}^{-1}\text{)}$;

Accept answers in range 56.0 to 56.3.

Accept two, three or four significant figures.

Award [2] for correct final answer.

HL SECTION A 04w

Page **38** of **44**

(b)
$$n(\text{Na}_2\text{CO}_3) = \frac{1}{2}n(\text{HCl});$$

 $n(\text{HCl}) = \frac{48.80}{1000} \times 0.1000 = 0.00488 \text{ mol};$
concentration of $\text{Na}_2\text{CO}_3 \left(= 0.0024 \times \frac{1000}{25} \right) = 0.0976 \text{ mol dm}^{-3};$ [3]

Award [3] for correct answer.

Award [3] for correct answer based on equation in (a), i.e. allow ECF from (a). Note -1(SF) is possible.

(c)
$$M_{\rm r} \, \text{Na}_{2} \text{CO}_{3} = 2(22.99) + 12.01 + 3(16.00) = 105.99$$
;
Accept 106.

mass of Na₂CO₃ reacting with HCl (aq) = $0.00244 \times 105.99 = 0.259 \text{ g}$; Allow ECF from (b) and $M_{\rm r}$. mass of Na₂CO₃ in $1.000 \text{ dm}^3 = 0.259 \times \frac{1000}{25} = 10.36 \text{ g}$; [3]

(d) mass of water in crystals =
$$(27.82-10.36) = 17.46 \text{ g}$$
;
Allow ECF from (b) and (c).
number of moles of water = $\frac{17.46}{18.02} = 0.9689$;

Accept 0.97

Note -1(U) is possible.

mole ratio $Na_2CO_3: H_2O = 0.0976: 0.9689$;

$$x = 10;$$
 [4]

HL SECTION A 04s

2. (a)
$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$
; [2]
Award [1] for formulas and [1] for coefficients.

HL SECTION A 04s

Page **39** of **44**

3. (a)
$$Zn + I_2 \rightarrow ZnI_2$$
; [1]
Accept equilibrium sign.

(b) (moles of) zinc
$$\left(= \frac{100.0 \text{ g}}{65.37 \text{ g mol}^{-1}} \right) = 1.530 \text{;}$$

(moles of) iodine $\left(= \frac{100.0 \text{ g}}{253.8 \text{ g mol}^{-1}} \right) = 0.3940 \text{;}$

ECF throughout.
-1 (SF) possible.

(reacting ratio is 1:1, therefore) zinc is in excess;

Must be consistent with calculation above.

[3]

(c) (amount of zinc iodide = amount of iodine used =
$$\frac{100.0}{253.8}$$
 moles)

(mass of zinc iodide = $\frac{100.0}{253.8}$ ×(65.37 + 253.8) =) 125.8 (g);

Use ECF throughout.
-1 (SF) possible.

HL SECTION A 03w

2. (a)
$${}^{3}Ag^{+}(aq) + XO_{4}^{3-}(aq) \rightarrow Ag_{3}XO_{4}(s);$$
 [2] [1] for balanced equation and [1] for states.

(b) (i)
$$n_{Ag+} = cV = 0.2040 \text{ mol dm}^{-3} \times 0.04118 \text{ dm}^{3}$$

= $0.008401 / 8.401 \times 10^{-3} \text{ mol } (-1 \text{ SF})$
Unit not needed for mark. [1]

(ii)
$$n_{Ag_3XO_4} = \frac{1}{3}n_{Ag^+} = \frac{1}{3} \times 0.008401 \text{ mol}$$

= 0.002800 / 2.800×10⁻³ mol
ECF from (a) / (b) (i).

(iii) 0.002800 mol weighs 1.172 g
$$1 \text{ mol weighs } \frac{1.172 \text{ g}}{0.002800 \text{ mol}} = 418.6 \text{ g mol}^{-1}$$
Accept answer in range 418 to 419.
No penalty for too many sig figs.
ECF from (b)(ii) (g mol $^{-1}$);
Do not accept g.

(iv)
$$(3 \times 107.87) + x + 4 (16.0) = 418.6$$
 (ECF)
therefore, $x = 30.99$ (accept 31.0 / 31);
P / phosphorus; [2]

HL SECTION A 02w

Page **40** of **44**

5. (a)
$$4X + 3O_2 \rightarrow 2X_2O_3 / 2X + 1\frac{1}{2}O_2 \rightarrow X_2O_3$$
 [1]

(b) mass of oxygen =
$$2.199 - 1.239 = 0.960 \text{ g}$$
;
amount (mol) of oxygen = $\frac{0.960}{16.00} = 0.060$;
amount (mol) of X = $\frac{2}{3} \times 0.060 = 0.040$;
= $30.97 / 31.0$;
X = P/phosphorus; [5]

(c) $\frac{N}{\text{mass in 100 g}}$ $\frac{S}{25.9}$ $\frac{74.1}{16.00}$ $\frac{25.9}{14.01}$ $\frac{74.1}{16.00}$; $\frac{74.1}{16.00}$ $\frac{14.01}{16.00}$ $\frac{14.01}{16.00}$

mole ratio = 1.85 = 4.63; formula N_2O_5 ; [3]

HL SECTION A 02s

4. (a)
$$CuO + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O$$
 [1]

(b)
$$0.036 \text{ dm}^3 \times 1.15 \text{ mol dm}^{-3} = 0.0414 \text{ mol}$$

(c)
$$\left(0.0414 \text{ mol HNO}_3 \times \frac{1 \text{ mol Cu(NO}_3)_2}{2 \text{ mol HNO}_3} = 0.0207 \text{ mol Cu(NO}_3)_2\right)$$

$$\left(0.0345 \text{ mol CuO} \times \frac{1 \text{ mol Cu(NO}_3)_2}{1 \text{ mol CuO}} = 0.0345 \text{ mol Cu(NO}_3)_2\right)$$

HNO3 is limiting reagent (Must be justified, not guessed. Allow ECF.) [1]

therefore
$$0.0207 \text{ mol Cu(NO}_3)_2$$
 formed (allow ECF) [1]

(d)
$$63.55 + 124.02 + 54.06 = 241.63 \text{ g mol}^{-1}$$
 [1]

 $241.63 \text{ g mol}^{-1} \times 0.0207 \text{ mol} = 5.00 \text{ g}$ (allow ECF from (c) and from molar mass)[1] [2]

HL SECTION A 01w

Page **41** of **44**

2. (a) (i)
$$M_r = 44.01$$
; m_C in CO_2 produced $= \frac{12.01}{44.01} \times 5.470 = 1.493$ g [1]

Percentage
$$C = \frac{1.493}{2.036} \times 100 = 73.32 \%$$
 [1]

(ii)
$$m_H = \frac{2.02}{18.02} \times 0.697 = 0.0781 \text{ g}$$
 [1]

Percentage H =
$$\frac{0.0781}{2.036} \times 100 = 3.84 \%$$
 [1]

amount,
$$n = \frac{C}{12.01}$$
 $\frac{H}{1.01}$ $\frac{N}{14.01}$ $\frac{O}{16.00}$ (ECF if % oxygen not worked out)

= 8:5:1:1, thus
$$C_8H_5NO$$
 [1]

(c) Empirical mass =
$$(8 \times 12) + (5 \times 1) + 14 + 16 = 131 \text{ g mol}^{-1}$$
 (allow for ECF) [1]
This is half the M_r OR $M_r = 2 \times M_{emp}$; thus molecular formula is $C_{16}H_{10}N_2O_2$. [1]

HL SECTION A 01w

3. (a) Pressure, volume and temperature of the gas. (Need all three for mark.) [1]

$$PV = nRT \ OR \ n = \frac{PV}{RT} [1]; \qquad n = \frac{m}{M} \ OR \ M = \frac{m}{n} [1]$$

$$\mathbf{OR}\ \mathbf{M} = \frac{\mathbf{m}}{\mathbf{V}} \frac{\mathbf{RT}}{\mathbf{P}} \left(\mathbf{for} \ \boldsymbol{[2]} \right)$$

Where R is the Ideal Gas Constant (accept gas constant, but not just constant)
$$(= 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1})$$

OR calculations as appropriate using molar volume = 22.4 dm³

(c) Vapour pressures are all the same. [1]
Vapour pressure does not depend on the:

• volume of the liquid [1]

• volume of the container [1]

OR As long as there is vapour-liquid equilibrium present, and the temperature remains the same, then the vapour pressure will be the same.

correct explanations in terms of dynamic equilibrium involved should be awarded marks

HL SECTION A 01s

Page **42** of **44**

2.	(a)		Pt	C1	N	Н	
		Divide by A _r values					[1]
		No. of moles	0.3332	0.6666	0.667	2	[1]

Empirical formula PtCl, N, H, [1]

[3 max]

(b) Accept any diagram that shows two Cl atoms attached to Pt and two NH₃ groups attached to Pt. (Allow ECF from (a)).

[1]

(c) Moles of AgNO₃ = 0.0162×0.102 = 0.00165 [1] Moles of NaCl = 0.0148×0.125 = 0.00185 [1] Therefore limiting reactant is AgNO₃ / 0.00165 moles AgCl produced [1] Mass of AgCl produced = 0.00165×143.32 = 0.236 g (accept values in range 0.236 - 0.237 g) [1]

[4 max]

If the wrong limiting reagent is used (NaCl), 0.265 g scores [3]. (N.B. Error carried forward; other routes are possible for the deduction that $AgNO_3$ is limiting / moles $AgCl = moles AgNO_3$)

HL B 12w

(b) (i)
$$Mass\ of\ C$$
: $\frac{6.93\times 10^{-3}\times 12.01}{44.01}=1.89\times 10^{-3}\ /0.00189\ (g)\ and$

$$Mass\ of\ H$$
: $\frac{2\times 1.01\times 2.83\times 10^{-3}}{18.02}=3.17\times 10^{-4}\ /0.000317\ (g)$;
$$Mass\ of\ O$$
: $3.00\times 10^{-3}-1.89\times 10^{-3}-3.17\times 10^{-4}=7.93\times 10^{-4}\ /0.000793\ (g)$;
$$n_C$$
: $\frac{1.89\times 10^{-3}}{12.01}=1.57\times 10^{-4}\ /0.000157\ (mol)\ and$

$$n_H$$
: $\frac{3.17\times 10^{-4}}{1.01}=3.14\times 10^{-4}\ /0.000314\ (mol)\ and$

$$n_O$$
: $\frac{7.93\times 10^{-4}}{16.00}=4.96\times 10^{-5}\ /0.0000496\ (mol)$;
$$Empirical\ formula=C_3H_6O\ ;$$

$$Allow\ C_{19}H_{38}O_6.$$

$$Award\ [4]\ for\ correct\ final\ answer\ if\ alternative\ working\ is\ used.$$

$$Award\ [1\ max]\ for\ C_3H_6O\ /C_{19}H_{38}O_6\ without\ working.$$

(ii) $C_6H_{12}O_2$; [1]

HL B 11w

9

Page **43** of **44**

(c) (i)
$$\left(\left(\frac{2\times1.01}{18.02}\right)(0.089) = \right)1.0\times10^{-2} \text{ g H} \text{ and } \left(\left(\frac{12.01}{44.01}\right)(0.872) = \right)2.38\times10^{-1} \text{ g C};$$

$$\left(\left(\frac{0.238}{1.30}\right)(100) = \right)18.3\% \text{ C};$$

$$\left(\frac{1.0\times10^{-2}}{1.30}\right)(100) = 0.77\% \text{ H};$$
[3]

Award [3] for correct final answer of 18.3 % C and 0.77 % H without working. Allow whole numbers for molar masses.

(ii)
$$\left((1.75) \left(\frac{35.45}{143.32} \right) = \right) 0.433 \text{ g (Cl)}$$
 and $\left(\left(\frac{0.433}{0.535} \right) (100) = \right) 80.9\%$ (Cl); [1]

Allow whole numbers for molar masses.

(iii)
$$\left(\frac{18.3}{12.01}\right) = 1.52 \text{ mol C}$$
 and $\left(\frac{0.77}{1.01}\right) = 0.76 \text{ mol H}$ and $\left(\frac{80.9}{35.45}\right) = 2.28 \text{ mol C1}$;

Allow whole numbers for atomic masses.

Empirical formula = C2HCl3;

Award [2] for correct empirical formula without working.

$$M_{\rm r} = (24.02 + 1.01 + 106.35) = 131.38$$
, so molecular formula is ${\rm C_2HCl_3}$; [3]
Award [3] for correct final answer without working.
Allow whole numbers for atomic masses.

HL B 11s

9e

HL B 06w

7a

Page **44** of **44**