
Name: Class: Date:

ALVI Chem 12 EQ P2 22w to 09s Paper 2 Nitrogen and sulfur 100marks

As you start and work through this worksheet you can tick off your progress to show yourself how much you have done, and what you need to do next. The first task is just to read the first question and should take you less than one minutes to complete.

Paper 2 Topic 12	RANK:	P1 Noob	P1 Novice	P1 Bronze	P1 Silver	P1 Gold	P1 ¹ Winner	P1 Hero	P1 Legend
Checklist Tick each task off as you go along		1 Q started	1 Q done	10% of marks	25% of marks	40% of marks	50% of marks	75% of marks	100% of marks
Topic (marks)	100		4	10	25	40	50	75	100
Time @75s/mark (minutes)	125		5	13	31	50	63	94	125

What the most thoughtful students will get out of their extensive studying will be a capacity to do meaningful brain-based work even under stressful conditions, which is a part of the self-mastery skillset that will continue to deliver value for the whole of their lives. Outstanding grades will also happen, but the most important goal from skillful action in study is being better at any important task, even if circumstances do not feel ideal.

As you are moving through your studies you can learn more about yourself by trying out new ways to manage yourself, and analysing how effective those new techniques were. In this reflective process not only will you get better at working positively and productively to deliver ambitious and successful outcomes, but you will be working towards one aspect of life's highest pursuit, summarised and inscribed on the Temple of Apollo at Delphi: "know thyself".

- 1. To complete these questions, as important as your answer, is checking your answer against the mark scheme.
- 2. For each page or group of 10-20 marks, convert your mark score into a percentage. This will allow you to see (and feel) your progress as you get more experience and understanding with each topic.
- 3. Multiple choice questions, done carefully where you explain and show yourself your thinking using written notes as you move through each question, can be more useful than just Paper 2 for students aiming for a C or B grade. Paper 2 should be the larger focus for students aiming for A and A* grades, however.
- 4. If you find you get a higher percentage answering short answer questions than multiple choice questions that often means you are NOT using the marking scheme correctly; your correct answer might not be fully complete for all the marks you are awarding. The marks easiest to miss rely on providing the largest amount of detail.

¹ **DO NOT** work on these higher levels of completion in your AS year unless you have also achieved at least a "**Silver**" (25%) in the same topic in **Paper 1**, which tend also to be easier questions, as well as ""**Silver**" (25%) in the same topic, if it exists, in Paper 3. www.**SmashingScience.org**Patrick Brannac

Page **1** of **20**

12 Nitrogen and sulfur

12.1 Nitrogen and sulfur

Learning outcomes

Candidates should be able to:

- 1 explain the lack of reactivity of nitrogen, with reference to triple bond strength and lack of polarity
- 2 describe and explain:
 - (a) the basicity of ammonia, using the Brønsted-Lowry theory
 - (b) the structure of the ammonium ion and its formation by an acid-base reaction
 - (c) the displacement of ammonia from ammonium salts by an acid-base reaction
- 3 state and explain the natural and man-made occurrences of oxides of nitrogen and their catalytic removal from the exhaust gases of internal combustion engines
- 4 understand that atmospheric oxides of nitrogen (NO and NO₂) can react with unburned hydrocarbons to form peroxyacetyl nitrate, PAN, which is a component of photochemical smog
- 5 describe the role of NO and NO₂ in the formation of acid rain both directly and in their catalytic role in the oxidation of atmospheric sulfur dioxide

Q# 250/ ALvl Chemistry/2022/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

- 2 Nitrogen molecules, N₂(g), contain two atoms attracted to each other by a triple covalent bond.
 - (b) Nitrogen oxides, NO₂ and NO, are produced in internal combustion engines. Release of these gases into the atmosphere leads to the formation of photochemical smog.

	(i)	Outline how nitrogen oxides are involved in the formation of photochemical smog.
		[2
	(ii)	Construct an equation to demonstrate how a catalytic converter reduces the amount of nitrogen oxide gases released into the atmosphere.
(c)		g) is very unreactive. It is difficult to make ammonia, $NH_3(g)$, directly from its elements bu an be made from $NH_4Cl(s)$.
	Ide	ntify a reagent and the conditions required to make $NH_3(g)$ from $NH_4Cl(s)$.
		[1
		hemistry/2022/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org
2 So	me o	xides of elements in Period 3 are shown.
		Na_2O Al_2O_3 P_4O_6 P_4O_{10} SO_2 SO_3
(a)	Na	reacts with O ₂ to form Na ₂ O. Na is the reducing agent in this reaction.

(d)	The	and SO_3 are found in the atmosphere. oxidation of SO_2 to SO_3 in the atmosphere is catalysed by NO_2 . first step of the catalytic oxidation is shown in equation 1.	
	THE	equation 1 $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$	
	(i)	Construct an equation to show how NO ₂ is regenerated in the catalytic oxidation of	SO ₂ .
			[1]
	(ii)	NO_2 can also react with unburned hydrocarbons to form photochemical smog.	
		State the product of this reaction that contributes to photochemical smog.	
			[1]
Q# :	252/ A (ii)	ALvl Chemistry/2021/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org State the environmental consequences of releasing SO ₂ (g) into the atmosphere.	
			[1]
	(iii)	SO ₂ (g) can be removed from the air by reacting it with NaOH(aq).	
		Construct an equation for the reaction of SO ₂ (g) with NaOH(aq). Include state sym	bols.
			[2]
O# ') E2/ ^	[To ALvl Chemistry/2021/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	tal: 21]
2		arbon monoxide gas, CO(g), and nitrogen gas, $N_2(g)$, are both diatomic molecules.	
	(b)	$N_2(g)$ is less reactive than CO(g) even though $N_2(g)$ has a lower bond energy than	CO(g).
		Suggest why $CO(g)$ is more reactive than $N_2(g)$.	
			[1
Q# 2	254/ A	ALvl Chemistry/2020/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	100 marin 1900 marin 1
	((iii) SO ₂ reacts with NO ₂ in the atmosphere to form SO ₃ and NO.	
		NO is then oxidised in air to form NO ₂ .	
		$SO_2 + NO_2 \rightarrow SO_3 + NO$	
		$2NO + O_2 \rightarrow 2NO_2$	
		State the role of NO ₂ in this two-stage process.	
			[1]

Q# 255/ ALvl Chemistry/2020/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

3 Nitric acid, HNO₃, can be made by reacting nitrogen dioxide with water.

The enthalpy change for the reaction can be measured indirectly using a Hess' cycle.

(c)	Nitr	$3NO_2(g) + H_2O(I) \xrightarrow{\Delta H_r} 2HNO_3(I) + NO(g)$ ogen and oxygen do not react at normal atmospheric temperatures.	
		lain why.	
	755765		

Nitr air.	oger	n oxides can be formed naturally in the Earth's atmosphere from nitrogen and oxygen in th	е
(d)	Sta	te one way that nitrogen oxides are produced naturally.	
(e)		ogen dioxide, NO_2 , acts as a homogeneous catalyst in the oxidation of atmospherius dioxide.	C
	(i)	Explain why NO ₂ is described as a homogeneous catalyst.	
		[
	(ii)	Write equations which describe the two reactions occurring when ${\rm NO_2}$ acts as a catalyst in the formation of sulfur trioxide from sulfur dioxide.	n
		······································	
			1

Q# 256/ ALvl Chemistry/2019/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

3 Crude oil is a natural source of hydrocarbons that are used as fuels.

[Total: 13]

(D)) in	ophene, C ₄ H ₄ S(I), is	an organic co	S. 1.02 ASS 2007			
	(i)	Construct the equal	tion for the co	mplete comb	ustion of thiophene,	C ₄ H ₄ S(I).	
		Include state symbol	ols in your an	swer.			
		hemistry/2019/m/TZ 2/P $_{\rm I}$, $_{\rm N_2}$, is the most abu	aper 4/Q# 1/wv	ww.SmashingScie	10 TO 0000		
(a)	Sta	te why N ₂ is very unre	eactive.				
(c)		State the industrial i	mportance of	ammonia.			
	(ii)	One method of prod	ucing NH ₃ is	by heating an	M.		
		2NH	l ₄ C1 + CaO	\rightarrow 2NH ₃ + (CaCl ₂ + H ₂ O		
		Explain why the read	ction of NH ₄ C	l with CaO pr	oduces ammonia.		
l) Thr (i)		xides of nitrogen, NC), NO ₂ and N	₂ O, can be for ion numbers o	med under different of nitrogen in NO an	conditions.	
2.672		xides of nitrogen, NC mplete the table to give	o, NO ₂ and Nove the oxidation	₂O, can be for	med under different	conditions.	
2.672		xides of nitrogen, NC	o, NO ₂ and Nove the oxidation	₂ O, can be for ion numbers o	med under different of nitrogen in NO an	conditions.	
2.022	Cor	xides of nitrogen, NC mplete the table to give	ormation of N	O, can be for numbers of NO	med under different of nitrogen in NO an	conditions.	
(i)	Cor	xides of nitrogen, NC mplete the table to give compou oxidation num can be formed by deference the formed by deference to the for	ormation of Notice 100 of Noti	NO ical reactions	med under different of nitrogen in NO an	conditions.	

Q# 258/ ALvl Chemistry/2018/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

(a) Nitrogen, N₂, is an inert gas that makes up 78% of the Earth's atmosphere.

		(i)	Explain why nitrogen is inert.	
	(b)		ogen, N_2 , and oxygen, O_2 , react together in the air during lightning strikes to form nitroge noxide, NO.	n
		(i)	Explain why the reaction of N_2 and O_2 occurs during lightning strikes.	
		(ii)	Write two equations to suggest how the NO formed reacts further to create nitric acid $\ensuremath{HNO_3}.$	t
			1	57
			2	
d)			soils have compounds such as ammonium nitrate, calcium carbonate and calcium de added to them.	
	(ii)		nen calcium hydroxide reacts with compounds containing the ammonium ion, NH_4^+ , as is produced.	
		Sta	ate the identity of this gas and explain why the reaction occurs.	
		gas	3	
		exp	planation	
			[2]	

Q# 259/ ALvl Chemistry/2018/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

- 1 Iron pyrite, FeS₂, has a yellow colour that makes it look like gold metal. The compound contains the ions Fe²⁺ and S₂²⁻.
 - (c) Iron pyrite is often called fool's gold because of its appearance. Impure samples of iron pyrite often contain a small amount of gold.

The gold can be obtained from impure iron pyrite. The impure iron pyrite is roasted in oxygen, to produce iron(III) oxide and sulfur dioxide. Gold does not react with oxygen.

	(i)	The sulfur dioxide produced during roasting would cause environmental conse released into the atmosphere.	quences if
		State and explain one of these environmental consequences.	
(ii)	Comp	plete the equation to show the roasting of iron pyrite in oxygen.	
	4FeS	S_2 + \rightarrow 2Fe ₂ O ₃ +	[2]
iii)		mple of impure iron pyrite was roasted in oxygen. The composition of the mixtur products is shown.	e of
		solid product mass/g	

solid product	mass/g
Fe ₂ O ₃	33.18
Au	0.37

Calculate the mass of ${\rm FeS_2}$ present in the sample of impure iron pyrite. Assume that all the ${\rm FeS_2}$ was converted to ${\rm Fe_2O_3}$ during the roasting process.

	Give your answer to two sig	gnificant figures.	
	(If you were unable to calcu calculation. This is not the	late an answer to (iii), use 55.0 correct answer.)	0g as the mass of FeS ₂ in this
			07 543
O# 26	50/ Alvi Chamistry/2016/m/T7 2/Da	2 A (2) (3)	old = % [1]
Q# 20 4	•	per 4/Q# 4/www.SmashingScience.or ere all found to be components	
-	The following compounds we	are all round to be components	or a sample of perior.
			H CH₃
	CH ₃ (CH ₂) ₂ CH ₃	(CH ₃) ₃ CCH ₂ CH(CH ₃) ₂	н₃с—ҫ҆—ҫ҆—он
		(CH ₃) ₃ CCH ₂ CH(CH ₃) ₂	H₃C H
	G	н	J
	(c) Fossil fuels are often co	ntaminated with sulfur.	
	State and explain why environment.	supplies of fossil fuels that of	contain sulfur pose a problem to the
			[2
		per 4/Q# 3/www.SmashingScience.or	
	an engine.	able component of petrol as it bi	urns explosively causing 'knocking' in
	The state of the s	on can also lead to emission of	unburnt hydrocarbons.
	State one environme	ntal consequence of this.	
			[1]
O# 24	63/ Alul Chamista /2045//774/D-		
	TORREST AND	per 4/Q# 2/www.SmashingScience.or n give rise to environmental cor	g nsequences in terms of effects on
10 (S)	both rivers and the atmospher	re.	50

(iv) Use your answer to (iii) to calculate the percentage by mass of gold in this sample of impure iron pyrite. Assume that gold is the only impurity in this sample of impure iron pyrite.

Page **8** of **20**

(i	i)	Oxides of nitrogen are produced by the action of bacteria on nitrate fertilisers.
		Explain the problems associated with the release of oxides of nitrogen into the atmosphere. Include an equation in your answer.
	_	[2]
(c) /	Alth	Lvl Chemistry/2015/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org lough nitrogen gas makes up about 79% of the atmosphere it does not easily form apounds.
9	(i)	Explain why nitrogen is so unreactive.
		[1]
(1	ii)	Explain why the conditions in a car engine lead to the production of oxides of nitrogen.
		[1]
(ii	ii)	Give an equation for a reaction involved in the removal of nitrogen monoxide, NO, from a car's exhaust gases, in the catalytic converter.
		[1]
		the main reasons for reducing the amounts of oxides of nitrogen in the atmosphere is ontribution to the formation of acid rain.
(iv)		rite an equation for the formation of nitric acid from nitrogen dioxide, ${\rm NO_2}$, in the mosphere.
		[1]
(v)		rite equations showing the catalytic role of nitrogen monoxide, NO, in the oxidation of mospheric sulfur dioxide, SO_2 .
		[2]
		Lvl Chemistry/2014/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org
		e Contact process for the manufacture of sulfuric acid was originally patented in h century and is still in use today.

the

The key step in the overall process is the reversible conversion of sulfur dioxide to sulfur trioxide in the presence of a vanadium(V) oxide catalyst.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ mol}^{-1}$

	(a)		e way in which the sulfur dioxide for this reaction is produced is by heating the sulfide ore pyrites, FeS ₂ , in air. Iron(III) oxide is also produced. Write an equation for this reaction.
			[2]
	(b)		sulfur trioxide produced in the Contact process is reacted with 98% sulfuric acid. The alting compound is then reacted with water to produce sulfuric acid.
		(i)	Explain why the sulfur trioxide is not first mixed directly with water.
			[1]
		(ii)	Write equations for the two steps involved in the conversion of sulfur trioxide into sulfurio acid.
			[2]
(d)	The	conv	version of sulfur dioxide into sulfur trioxide is carried out at a temperature of 400 °C.
	(i)		reference to Le Chatelier's Principle and reaction kinetics, state and explain one antage and one disadvantage of using a higher temperature.
			[4]
	(ii)		e the expression for the equilibrium constant, $K_{\rm p}$, for the formation of sulfur trioxide sulfur dioxide.
		K _p =	
			[1]

(111)	eq:	uilibrium. equilibrium, the pressure in the flask was 2.00×10^5 Pa and the mixture contained moles of sulfur trioxide.
	Ca	Iculate K_p . Include the units.
		$K_p = \dots$
		units =[5]
		[Total: 19]
5 Pi	ropano widel o) Wh soli	Chemistry/2013/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org e, C ₃ H ₈ , and butane, C ₄ H ₁₀ , are components of Liquefied Petroleum Gas (LPG) which y used as a fuel for domestic cooking and heating. en propane or butane is used in cooking, the saucepan may become covered by a id black deposit.
	(i)	What is the chemical name for this black solid?
	(ii)	Write a balanced equation for its formation from butane.
(c)	Ammo Descri	Chemistry/2012/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org onia is a weak base which forms salts containing the ammonium ion. ibe, with the aid of an equation, the formation and structure of the ammonium ion. hould use displayed formulae in your answer.

[3]

[Total: 13]

Q# 267/ ALvl Chemistry/2012/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

2 Ammonium sulfate, (NH₄)₂SO₄, is widely used as a fertiliser.

In order to determine its percentage purity, a sample of ammonium sulfate fertiliser was analysed by reacting a known amount with an excess of NaOH(aq) and then titrating the unreacted NaOH with dilute HC1.

(a) Ammonium sulfate reacts with NaOH in a 1:2 ratio. Complete and balance the equation for this reaction.

$$(NH_4)_2SO_4 + 2NaOH \rightarrowNH_3 + +$$
 [2]

(b) A 5.00 g sample of a fertiliser containing (NH₄)₂SO₄ was warmed with 50.0 cm³ (an excess) of 2.00 mol dm⁻³ NaOH.

When all of the ammonia had been driven off, the solution was cooled.

The remaining NaOH was then titrated with 1.00 moldm⁻³ HC1 and 31.2 cm³ were required for neutralisation.

(i) Write a balanced equation for the reaction between NaOH and HC1.

g------

(ii) Calculate the amount, in moles, of HC1 in 31.2 cm3 of 1.00 mol dm-3 HC1.

(iii) Calculate the amount, in moles, of NaOH in 50.0 cm³ of 2.00 mol dm⁻³ NaOH.

(iv) Use your answers to (i), (ii) and (iii) to calculate the amount, in moles, of NaOH used up in the reaction with (NH₄)₂SO₄.

	[3]
(i	ii) What are the environmental consequences of the compound you have identified in (ii)?
(ii) Give the formula of another sulfur compound which is formed in the atmosphere from sulfur dioxide.
	(i) State one way by which sulfur dioxide enters the atmosphere.
	3/ ALvI Chemistry/2012/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org Sulfur dioxide is present in small, but significant, amounts in the Earth's atmosphere.
	[Total: 9]
	[7]
vii)	Hence, calculate the percentage purity of the ammonium sulfate fertiliser.
(vi)	Use your answer to (v) to calculate the mass of $(NH_4)_2SO_4$ that reacted with NaOH.
	(NH ₄) ₂ SO ₄ that reacted with NaOH.
(v)	Use your answer to (iv) and the equation in (a) to calculate the amount, in moles, of

Q# 269/ ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

2 Crude oil contains a mixture of hydrocarbons together with other organic compounds which may contain nitrogen, oxygen or sulfur in their molecules.

At an oil refinery, after the fractional distillation of crude oil, a number of other processes may be used including 'cracking', 'isomerisation', and 'reforming'.

One of the sulfur-containing compounds present in crude oil is ethanethiol, C_2H_5SH , the sulfur-containing equivalent of ethanol. Ethanethiol is toxic and is regarded as one of the smelliest compounds in existence.

When ethanethiol is burned in an excess of air, three oxides of different elements are formed.

(c) When efformed.	thanethiol is burned in an excess of air, three oxides of different elements are
(c) (i)	Construct a balanced equation for this reaction.
One oxide is	Two of the oxides formed cause serious environmental damage. s CO2 which leads to enhanced greenhouse effect causing global warming. er oxide, identify the type of pollution caused and describe one consequence of this pollution.
	nall amount of ethanethiol is added to liquefied gases such as butane that are widely d in portable cooking stoves.
Sug	gest a reason for this.
Q# 270/ AL In many	vl Chemistry/2010/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org countries, new cars have to comply with regulations which are intended to reduce stants coming from their internal combustion engines.
300000000000000000000000000000000000000	lutants that may be formed in an internal combustion engine are carbon monoxide I nitrogen monoxide, NO.
(e) (i)	Outline how each of these pollutants may be formed in an internal combustion engine.
	CO
	NO

	(11)	State the r	nain nazard asso	ociated with each of the	ese pollutants.
		CO		~~ ~~~	
		NO			[4]
				removed from the exha h are placed in the exh	aust gases of internal combustion aust system of a car.
(f)	(i)				st in a catalytic converter?
	(ii)	Construct			n in which both CO and NO are nverter.
O# 2	71 / ^1			# 1/www.SmashingScience.or	[2]
(d)	Нус	lrogen cyanid	e, HCN, is a gas v	which is also isoelectroni iple bond with the followi	c with N ₂ and with CO.
			bond	bond energy/kJ mol ⁻¹	
			-C≡N in HCN	890	
			N≡N	994	
			C≡O	1078	
	bon		ule, CO and HCN	s the same number of e are both very reactive w	electrons and a strong triple hereas N ₂ is not.
	75757				[1]
Q# 27	Con alter	cern over th	e ever-increasing es of energy. One	of these, suggested by P	s led to many suggestions for Professor George Olah, winner of ich can be obtained in a number
			oe used instead o electricity in a fuel		al internal combustion engine or
	(a)	Construct a l	balanced equation	for the complete combi	ustion of methanol.
					[1]

When hydrocarbon fuels are completely burned in an internal combustion engine, several toxic pollutants may be formed.

(a)	State two toxic pollutants that can be produced after complete combustion of hydrocarbon fuel in an internal combustion engine.	a
	[2	 2]
Mark S	Scheme <mark>ALyl Chem 12 EQ P2 22w to Q9s Paper 2 Nitrogen and sulfur 1</mark> 9	<mark>00mark</mark>
Q# 250/ A	ALvl Chemistry/2022/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	
2(b)(i)	M1 react with (unburnt) hydrocarbons	2
	M2 (form) PAN / peroxyac(et)yl nitrate	
2(b)(ii)	$2NO + 2CO \rightarrow 2CO_2 + N_2 OR NO_2 + 2CO \rightarrow \frac{1}{2}N_2 + 2CO_2$	1
2(c)	any Group 1 hydroxide or Ca(OH) ₂ / Sr(OH) ₂ / Ba(OH) ₂	1
Q# 251/ A	ALVI Chemistry/2022/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org	1:1
2(d)(i)	NO + ½O ₂ → NO ₂	1
2(d)(ii)	peroxyac(et)ylnitrate / PAN	1
Q# 252/ A	ALVI Chemistry/2021/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org	-
1(d)(ii)	acid rain	
1(d)(iii)	M1 SO₂(g) + 2NaOH(aq) → Na₂SO₃(aq) + H₂O(I) AND correct species and balancing	2
	M2 State symbols	
Q# 253/ A	ALVI Chemistry/2021/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	**
2(b)	CO / it is a polar molecule / it has a (permanent) dipole (but N ₂ is non-polar)	1
Q# 254/ /	ALvl Chemistry/2020/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	
2(b)(iii)	(homogeneous) catalyst	1
Q# 255/ A	ALvl Chemistry/2020/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org	
3(c)	M1 nitrogen has a triple bond M2 EITHER	2
	or o	
3(d)	lightning	1
3(e)(i)	M1 define homogeneous (homogeneous catalyst is) in the same phase / state as the reactants M2 and M3 Define catalyst All 3 points scores 2 marks. Any 2 points scores 1 mark increase the rate AND lowers the activation energy AND without being chemically altered at the end of the reaction / are regenerated at the end of the reaction	
3(e)(ii)	M1 NO ₂ + SO ₂ \rightarrow NO + SO ₃ M2 NO + ½ O ₂ \rightarrow NO ₂	2

Q# 256/ ALvl Chemistry/2019/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

3(b)(i)	$C_4H_4S(I) + 6O_2(g) \rightarrow 4CO_2(g) + 2H_2O(I) + SO_2(g)$	is y
	correct species balancing state symbols Award one mark for two correct bullet points, award two marks for all three correct.	

Q# 257/ ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org

1(a)	strong triple bond / strong N≡N OR high activation energy / E₃ OR non-polar			1
1(c)(i)	(it is used to make) fertilisers			1
1(c)(ii)	M1 CaO displaces NH ₃ (from its salt / NH ₄ *) M2 CaO is a stronger base / more basic (than NH ₃)			2
1(d)(i)	3	NO	NO ₂	1
	(+)	2/(+)II	(+)4/(+)IV	
1(d)(ii)	M1 $\frac{1}{2}N_2 + O_2 \rightarrow NO_2$ M2 $Mg(NO_3)_2 \rightarrow MgO + 2NO_2 + \frac{1}{2}O_2$		200	2

Q# 258/ ALvl Chemistry/2018/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

2(a)(i)	mark for each bullet, max 2 triple bond non-polar / no dipole needs a lot of energy to break / strong	2
2(b)(i)	(lightning) provides the (high) activation energy	1
2(b)(ii)	M1 NO + $\frac{1}{2}$ O ₂ \rightarrow NO ₂ M2 2NO ₂ + H ₂ O + $\frac{1}{2}$ O ₂ \rightarrow 2HNO ₃	2
2(d)(ii)	M1 ammonia / NH ₃ M2 displaces NH ₃	2

Q# 259/ ALvl Chemistry/2018/w/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

1(c)(i)	M1 acid rain	2
	M2 destroys / damages / weathers / erodes / buildings / statues kills/harms fish / coral / plants / crops / trees / deforestation leaches salts / ions (aluminium) from soil (into rivers / lakes) leaches away soil nutrients breathing difficulties lowers pH / increases acidity of soil / rivers / oceans / seas	
1(c)(ii)	balanced equation with 11O ₂ and 8SO ₂ M1: O ₂ and SO ₂ M2: 11 and 8	2
1(c)(iii)	M1 is for process of calculating number of moles of Fe_2O_3 33.18 ÷ 159.6 (= 0.2079 mol) M2 for correct use of stoichiometry and 120.0 with candidate's M1 M2 (0.2079) × 4/2 × 120.0 = 49.89 (g)	2
1(c)(iv)	(0.37/(0.37+49.89)) = 0.74	1

0" 000 /	1.01 /0.04	c/ /== c/c	. / /	
O# 260/ Al	vi (nemistry/201	6/m/1/	!/()# 4/www.Sr	nashingScience.org

(c) sulfur dioxide would be produced on combustion [1] (which contributes to) acid rain [1]	[2]
--	-----

Q# 261/ ALvl Chemistry/2015/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

- 11			I .	
	(iii)	global dimming /PAN/ smog / global warming	[1]	[1]

Q# 262/ ALvl Chemistry/2015/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

(ii)	(oxides of nitrogen/NO _x /NOs) cause acid rain	[1]	
	$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$	[1]	
	OR 4NO₂ + 2H₂O + O₂ → 4HNO₃		[2
	OR		
	$SO_2 + NO_2 \rightarrow SO_3 + NO \text{ AND } SO_3 + H_2O \rightarrow H_2SO_4$		

Q# 263/ ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

(c) (i)	strong triple bond	[1]	[1]
(ii)	high temperature (needed for reaction between N ₂ and O ₂)	[1]	[1]
(iii)	$ 2NO + 2CO \rightarrow N_2 + 2CO_2 $ $OR 2NO + C \rightarrow N_2 + CO_2 $	[1]	[1]
(iv)	4NO ₂ + 2H ₂ O + O ₂ → 4HNO ₃	[1]	[1]
(v)	$NO + \frac{1}{2}O_2 \rightarrow NO_2$	[1]	
	$NO_2 + SO_2 \rightarrow NO + SO_3$ $OR NO_2 + SO_2 + H_2O \rightarrow NO + H2SO_4$	[1]	[2]

Q# 264/ ALvl Chemistry/2014/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

2	(a)	$4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$	1	[2]
•	(b) (i)	Very exothermic/gets very hot OR creates (acid/H ₂ SO ₄) spray/mist/fog/fumes	1	1
	(ii)	$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$	1	
		$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$	1	[2]
(d)	(d) (i)	Advantage = higher rate Greater KE/energy/speed/collision frequency/proportion of successful collisions/more particles with E>Ea	1	-
		Disadvantage – reduced yield/less product	1	
		(Forward reaction) exothermic AND (hence in accordance with LCP) equilibrium/reaction shifts left (to counteract inc T) ora	1	[4]
	(ii)	$K_p = \frac{pSO_3^2}{pSO_2^2 \times pO_2}$	1	[1]

(iii)	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ 2 2 04.18×4.00	1	
	(-1.8) (-0.9) 0.2 1.1 1.80	1	
	xSO ₃ = 1.8/3.1 = 0.581 xSO ₂ = 0.2/3.1 = 0.065 xO ₂ = 1.1/3.1 = 0.355	1	
	$K_p = \frac{0.581^2 \times (2 \times 10^6)^2}{0.065^2 \times (2 \times 10^5)^2 \times 0.355 \times 2 \times 10^5} = 1.13 \times 10^{-3} \text{ Pa}^{-1}$	1+1	[5

Q# 265/ ALvl Chemistry/2013/w/TZ 1/Paper 4/Q# 5/www.SmashingScience.org

(b) (i) carbon allow graphite

(1)

(ii) $2C_4H_{10} + 5O_2 \rightarrow 8C + 10H_2O$ allow balanced equations which include CO and/or CO_2

(1) [2]

Q# 266/ ALvl Chemistry/2012/w/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

correct displayed eqn.,

(c)

(1) (1)

co-ordinate / dative bond clearly shown

(1)[3]

Q# 267/ ALvl Chemistry/2012/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

(1)(1) [2]

(1)

(ii)
$$n(HCl) = \frac{31.2}{1000} \times 1.00 = 0.0312 = 0.03$$

(1)

(iii)
$$n(NaOH) = \frac{50.0}{1000} \times 2.00 = 0.10$$

(iv)
$$n(NaOH)$$
 used up = $0.10 - 0.0312 = 0.0688 = 0.07$

(1)

(1)

(1)

(1)

(v)
$$n[(NH_4)_2SO_4] = \frac{0.0688}{2} = 0.0344 = 0.03$$

(vi) mass of
$$(NH_4)_2SO_4 = 0.0344 \times 132 = 4.5408 = 4.54$$

(vii) percentage purity =
$$\frac{4.5408 \times 100}{5.00}$$
 = 90.816 = 90.8

(1) [7]

Q# 268/ ALvl Chemistry/2012/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

(d) (i) combustion of fossil fuels – e.g. from car engines

from car exhausts or

during the extraction of metals from sulfide ores or volcanic eruptions/burning sulfur from volcanoes or burning biomass

(1)

(ii) H₂SO₄

SO₃ allow H₂SO₃ formula required

(1)

(iii) acid rain

or

its consequences e.g. damage to buildings,

damage to crops, plants, marine life deforestation

or

SO₃ is toxic

(1) [3]

Q# 2	69/ A	Lvl C	hemistr	ry/2011/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org			
	(c)	(i)	2C2H	$_{5}SH + {}^{9}I_{2}O_{2} \rightarrow 2CO_{2} + SO_{2} + 3H_{2}O \text{ or}$ $H_{5}SH + 9O_{2} \rightarrow 4CO_{2} + 2SO_{2} + 6H_{2}O$		****	
				ect products ect equation which is balanced		(1)	
		(ii)		CO₂ anced greenhouse effect		(1)	
				al warming		(1) (1)	
			dam	SO ₂ lation of acid rain age to stonework of buildings/ lolving of aluminium ions into rivers/		(1)	
				age to watercourses or forests/			
				atic life destroyed/ osion of metals		(1)	[6]
	(d)	he	p dete	ect leaks of gas		(1)	[1]
	(e)	ter	nperat	ture of 450°C		(1)	
				of 1 – 2 atm nadium(V) oxide/vanadium pentoxide catalyst		(1) (1)	[3]
						[Total	: 15]
Q# 2			hemisti CO	ry/2010/w/TZ 1/Paper 4/Q# 2/www.SmashingScience.org by incomplete combustion of the hydrocarbon fuel (1)			
			NO	by reaction between N ₂ and O ₂ in the engine (1)			
		(ii)	СО	toxic/effect on haemoglobin (1)			
			NO	toxic/formation of acid rain (1)			[4]
	(f)	(i)	platin	um/Pt – allow palladium/Pd or rhodium/Rh (1)			
		(ii)	2CO	$+ 2NO \rightarrow 2CO_2 + N_2 (1)$			[2]
						[Total:	14]
Q# 271/ ALvl Chemistry/2010/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org							[1]
Q# 2	(d) CO and HCN both have a dipole or N ₂ does not have a dipole (1) Q# 272/ ALvl Chemistry/2009/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org						ניו
				+ $3O_2 \rightarrow 2CO_2 + 4H_2O$	(1)		[1]
	(b)	so	2		(1)		
		NO	x/NO	₂ / NO – not N ₂ O	(1)		
		Pb compounds – not Pb		(1)	(any 2)		
		If m	ore th	an two answers are given any wrong ones will be penalised.			[2]