
Name: Class: Date:

ALvl Chem 24 EQ P5 22w to 02s Paper 5 Electrochemistry 103marks

As you start and work through this worksheet you can tick off your progress to show yourself how much you have done, and what you need to do next. The first task is just to read the first question and should take you less than 3 minutes to complete.

Paper 5 Topic 24	RANK:	P5	P5	P5	P5	P4	P5 ¹	P5	P5
Checklist Tick each		Noob	Novice	Bronze	Silver	Gold	Winner	Hero	Legend
task off as you go along	Marks	1 Q	1 Q	10% of	25% of	40% of	50% of	75% of	100% of
task off as you go along		Started	done	marks	marks	marks	marks	marks	marks
Topic (marks)	103		15	10	26	41	52	77	103
Time @150s/mark (minutes)	258	_	37	26	64	103	129	193	258

What the most thoughtful students will get out of their extensive studying will be a capacity to do meaningful brain-based work even under stressful conditions, which is a part of the self-mastery skillset that will continue to deliver value for the whole of their lives. Outstanding grades will also happen, but the most important outcome from skillful action in study is being better at any important tasks even if circumstances are do not feel ideal.

Learning how to manage oneself so we can more reliably get ambitious and successful outcomes out of our challenges in a productive and positive way is one aspect of life's most valuable pursuit summarised and inscribed on the Temple of Apollo at Delphi: "know thyself".

- 1. To complete these questions, as important as your answer, is checking your answer against the mark scheme.
- 2. For each question, or page, convert your mark score into a percentage. This will allow you to see (and feel) your progress as you get more experience and understanding with each topic.
- 3. If you find you get a higher percentage answering short answer questions than multiple choice questions that often means you are using the marking scheme correctly; your correct answer might not be fully complete. The marks easiest to miss rely on providing more details fully described.

¹ **DO NOT** work on these higher levels of completion unless you have also achieved at least a "**Gold**" (40%) in the same topic ir **Paper 4**, which is **MOST** of your **A2 grade**.

Q# 72/ ALvl Chemistry/2019/w/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org :o

1 Yttrium barium copper oxide, YBa₂Cu₃O₇, is a crystalline compound.

You are to design an experiment in which YBa₂Cu₃O₇ is first synthesised and then analysed by titration.

- (a) YBa₂Cu₃O₇ can be synthesised by reacting Y₂O₃, BaCO₃ and CuO using the following method.
 - Place solid Y₂O₃, BaCO₃ and CuO together in a mortar and grind the mixture well with a
 pestle.
 - Transfer the mixture to a porcelain crucible and place this in an oven set at 920 °C.
 - Heat the mixture for 12 hours, then allow the crucible and its contents to cool slowly in the oven to below 100 °C before removing it.

The equation for the reaction is given.

$$Y_2O_3 + 4BaCO_3 + 6CuO + \frac{1}{2}O_2 \rightarrow 2YBa_2Cu_3O_7 + 4CO_2$$

(i) YBa₂Cu₃O₇ contains Y, Ba and Cu in the molar ratio of 1:2:3.

Calculate the minimum masses of $BaCO_3$ and CuO that are needed to react with 0.750 g of Y_2O_3 , to give a Y:Ba:Cu ratio of 1:2:3.

mass of BaCO ₃ =	g
mass of CuO =	g [3]

(ii)	State what should be done once the solid product has cooled to ensure that the highest possible yield of YBa ₂ Cu ₃ O ₇ has been produced.

SMASHING !!!

YBa₂Cu₃O₇ contains some copper ions in the unusual +3 oxidation state.

The proportion of Cu3+ in YBa2Cu3O2 can be determined by titration.

Step 1

A sample of $YBa_2Cu_3O_7$ is reacted with an excess of concentrated aqueous HBr. Cu^{3+} ions are reduced to Cu^{2+} ions and Br_3^- ions are formed.

$$2Cu^{3+}(s) + 3Br^{-}(aq) \rightarrow 2Cu^{2+}(aq) + Br_3^{-}(aq)$$

Step 2

A solution of 1.0 mol dm⁻³ sodium citrate is added to the mixture from **Step 1**. The resulting mixture is then neutralised with a minimum volume of concentrated NH₃(aq).

Step 3

Excess I is added which reacts with Br₃ to form I₂.

$$Br_3^-(aq) + 2I^-(aq) \rightarrow 3Br^-(aq) + I_2(aq)$$

Step 4

The I_2 is titrated with a standard solution of $S_2O_3^{2-}$ and starch solution as an indicator.

$$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

The concentration of $I_2(aq)$ can therefore be determined and hence the concentration of $Br_3^-(aq)$. From this the amount of $Cu^{3+}(s)$ can be determined.

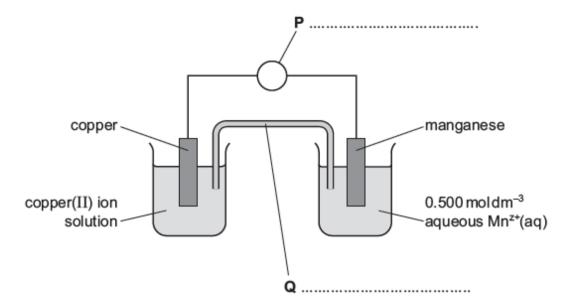
(b) The table gives some electrochemical data.

reduction process	E°/V
I ₂ + 2e ⁻ ⇌ 2I ⁻	+0.54
Cu ²⁺ + I ⁻ + e ⁻ ⇌ CuI	+0.86
O ₂ + 4H ⁺ + 4e ⁻ ⇌ 2H ₂ O	+1.23

Use these data and the information given above to answer the following questions.

(i)	The citrate anion forms an insoluble complex with Cu ²⁺ and so removes Cu ²⁺ from solution.
	Explain why this is necessary.
	[1]
(ii)	Explain why it is necessary to neutralise the mixture in Step 2 .
	[1]

(iii	When starch indicator is added in Step 4, the mixture turns blue-black due to the presence of I ₂ (aq). The end-point of the titration with S ₂ O ₃ ²⁻ (aq) is a colourless solution.
	The number of moles of $\rm S_2O_3^{2-}(aq)$ needed for complete reaction with $\rm I_2(aq)$ can be calculated from the mean titre value. Hence the moles of $\rm I_2(aq)$ can be determined.
	State the expression for the moles of Cu^{3+} in the sample of $YBa_2Cu_3O_7$. Use A to represent the number of moles of $I_2(aq)$ in Step 4 .
	moles Cu ³⁺ = mol [1]
(c) (i) Calculate the mass of hydrated sodium citrate, Na ₃ C ₆ H ₅ O ₇ •2H ₂ O, that would be required for the preparation of 250.0 cm ³ of a solution of 1.0 mol dm ⁻³ citrate ions, C ₆ H ₅ O ₇ ³⁻ .
	[<i>M</i> _r : Na ₃ C ₆ H ₅ O ₇ •2H ₂ O, 294.0]
	mass of $Na_3C_6H_5O_7 \cdot 2H_2O = \dots g$ [1]
(ii) A student places the mass of Na ₃ C ₈ H ₅ O ₇ •2H ₂ O calculated in (c)(i) into a beaker.
	Describe how the student can prepare exactly 250.0 cm ³ of a solution of 1.0 mol dm ⁻³ citrate ions from the sample in the beaker.
	Give the name and capacity, in cm ³ , of any apparatus used.
	[3]
(d) A	different student records the following titration data in Step 4.


experiment	rough	1	2
final reading/cm ³	21.20	24.60	47.75
initial reading/cm ³	0.00	3.10	25.30
titre/cm³	21.20	21.50	22.45

Identify the problem with the student's titration method and suggest how it could be improved
[2
[Total: 13

Q# 73/ ALvl Chemistry/2019/s/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org :o)

- 1 A student investigates the charge (z+) carried by aqueous manganese ions, Mn^{z+}(aq). The electrochemical cell shown is set up for this investigation with the following two half-cells:
 - a standard copper(II) ion/copper half-cell (E° = +0.340 V)
 - a half-cell made from manganese and 0.500 mol dm⁻³ Mn^{z+}(aq).
 - (a) Label the items P and Q and state the concentration of the copper(II) ion solution in the copper half-cell.

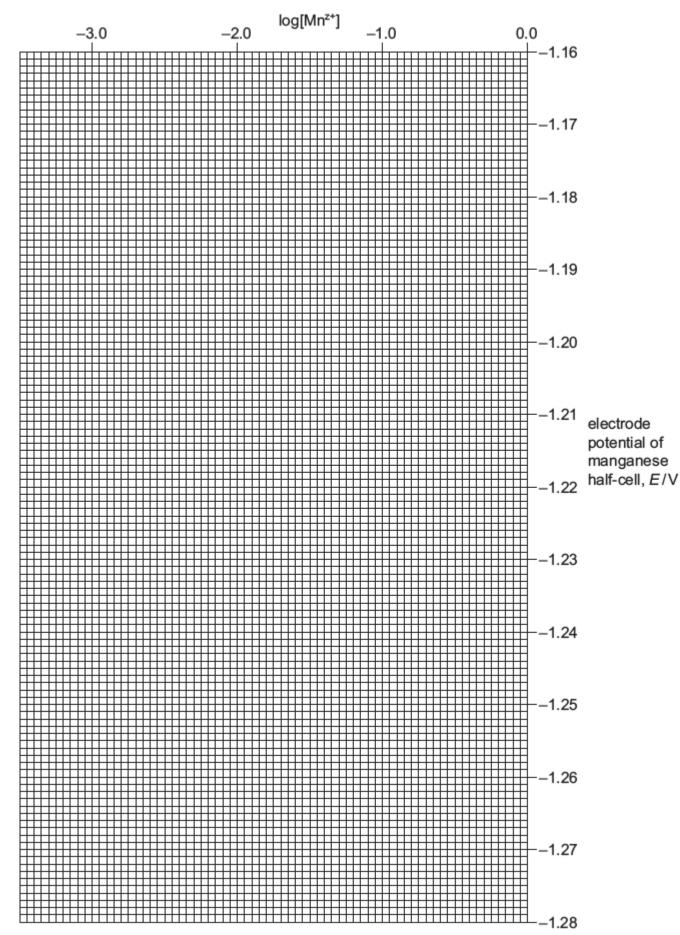
(b) During the investigation the student plans to use solutions of Mn^{z+}(aq) of lower concentration than 0.500 mol dm⁻³.

Patrick Brannac

(i) Calculate the volume of 0.500 mol dm⁻³ Mn^{z+}(aq) needed to prepare 100.0 cm³ of 0.200 mol dm⁻³ Mn^{z+}(aq).

(11)	Describe how, using a 100 cm ³ volumetric flask, the student should prepare exactly 100.0 cm ³ of 0.200 mol dm ⁻³ Mn ^{z+} (aq) using the volume of 0.500 mol dm ⁻³ Mn ^{z+} (aq calculated in (b)(i) and standard school or college apparatus.
	(2)

The cell potential of the electrochemical cell in **(a)** is measured. The 0.500 mol dm⁻³ Mn^{z+}(aq) is then replaced by the 0.200 mol dm⁻³ solution and the cell potential is measured again. This is repeated for other lower concentrations of Mn^{z+}(aq). All measurements are made at 25 °C.


(iii) The results of the experiment are shown in the table.

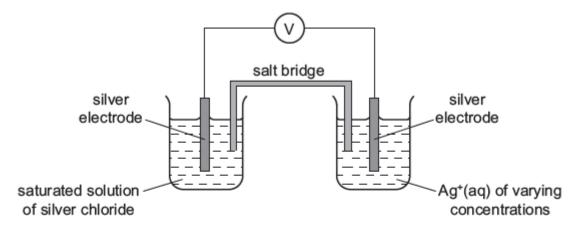
Complete column three of the table, calculating log[Mn^{z+}] to **two decimal places**. Complete column four of the table, calculating *E*, the electrode potential of each manganese half-cell, to **three decimal places**, using the equation shown.

$$E(\text{manganese half-cell}) = E_{cell} + 0.340 \text{ V}$$

[Mnz+] /moldm-3	cell potential, E_{cell}/V	log[Mn²+]	electrode potential of each manganese half-cell, E/V
5.0 × 10 ⁻¹	-1.529	-0.30	-1.189
2.0 × 10 ⁻¹	-1.541		
1.0 × 10 ⁻¹	-1.550		
7.5 x 10 ⁻²	-1.553		
2.5 x 10 ⁻²	-1.567		
8.0 × 10 ⁻³	-1.582		
6.0 × 10 ⁻³	-1.590		
4.0 × 10 ⁻³	-1.591		
3.0 × 10 ⁻³	-1.594		
5.0 × 10 ⁻⁴	-1.617		

(c) Plot a graph of electrode potential of manganese half-cell (y-axis) against log[Mn²+] (x-axis). Use a cross (x) to plot each data point. Draw a line of best fit.

(d)	(i)	Circle the most anomalous point on your graph. [1]
	(ii)	The student is careful to ensure that all solutions used are at the same temperature in all experiments.
		Suggest a possible explanation for the position of the anomalous point circled in (d)(i) relative to the line of best fit.
		[1]
(e)	You 25°	or graph is a plot of E against log[Mn $^{z+}$] and can be analysed using the Nernst equation at ${\mathbb C}$.
		$E = E^{\circ} + \frac{0.059}{z} \log[Mn^{z+}]$
	E is	the value of the charge carried by the manganese ion the electrode potential/V s the standard electrode potential/V
		e the Nernst equation and your graph to find the standard electrode potential, E^{\bullet} , of the nganese half-cell.
		<i>E</i> •=V [1]
(f)	(i)	Determine the gradient of the graph. State the co-ordinates of both points you used for your calculation. Record the value of the gradient to three significant figures .
		co-ordinates 1 co-ordinates 2
		gradient =[2]


(ii)	Use your answer to (f)(i) and the Nernst equation to calculate the value of z to three significant figures and give the formula of the manganese ion. Your calculation must show the use of the Nernst equation.
	(If you were unable to calculate an answer to (f)(i) you may use the value 0.0197. This is not the correct value.)
	z =
	formula of manganese ion =[2]
	vering [Mn²+] causes the value of the electrode potential of the manganese half-cell to come more negative.
Sug	ggest why this happens.
	[1]
	[Total: 16]
	Low

Q# 74/ ALvl Chemistry/2018/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :0

2 The solubility product, K_{sp}, of a sparingly soluble salt can be determined by measuring the cell potential of a cell known as a concentration cell. One of the half-cells uses a saturated solution of the salt as the electrolyte.

The K_{sp} of silver chloride, AgC l, can be measured using the apparatus shown.

The silver electrodes of the two half-cells were connected via a voltmeter, reading to three decimal places. This measured the cell potential of the concentration cell.

The half-cells were kept at a temperature of 40 °C. Under these conditions, the relationship between cell potential, E_{cell} , and [Ag⁺(aq)] is

$$16.1E_{cell} = \log C_{sat} - \log [Ag^{+}(aq)]$$

C_{sat} is the concentration of the saturated solution of silver chloride

(a) (i) The	solutions	in the	half-cells no	eed to be	e kept at 40°C.

	Explain how you would do this.
	Tal.
	[1]
ii)	If the temperature was maintained at 40 °C, over time the reading on the voltmeter would change.
	Suggest one reason why.
	TAT

The cell potential was measured for various concentrations of Ag⁺(aq) and the results obtained are shown in the table.

(b) Complete the fourth and fifth columns of the table.

Give each answer to two decimal places.

experiment	[Ag ⁺ (aq)] /moldm ⁻³	E _{cell} /V	–log [Ag⁺(aq)]	16.1 <i>E</i> _{cell} /V
1	0.00100	-0.097		
2	0.00500	-0.140		
3	0.0100	-0.159		
4	0.0250	-0.171		
5	0.0500	-0.202		
6	0.100	-0.221		
7	0.200	-0.239		
8	0.500	-0.264		
9	1.50	-0.294		

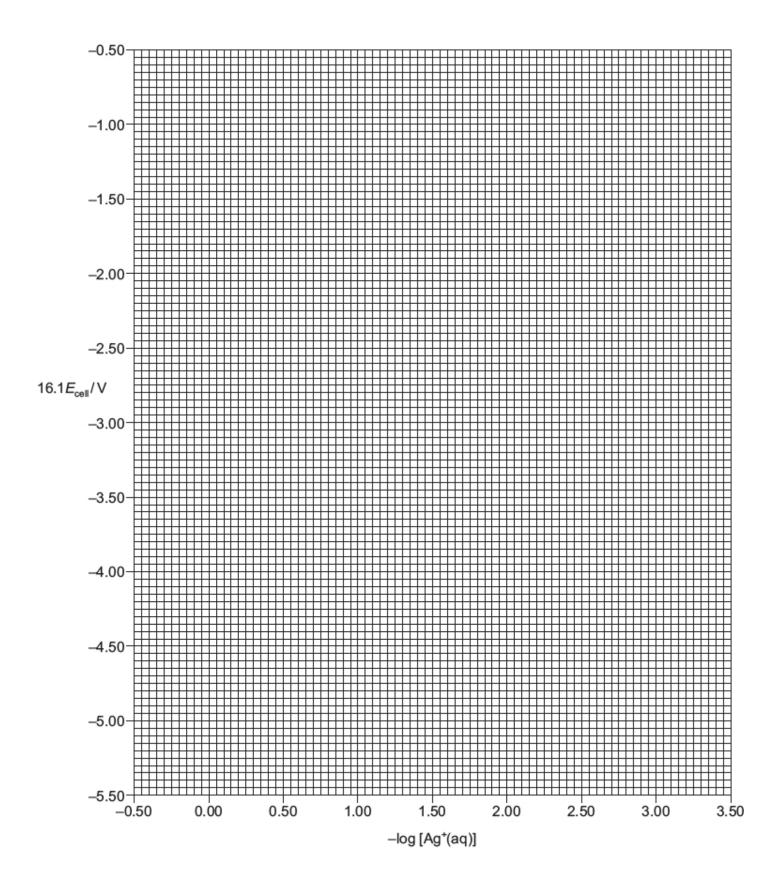
[2]

(c) (i) On the grid on page 9, plot a graph of 16.1E_{cell} against –log [Ag⁺(aq)].

Draw a line of best fit. [2]

(ii) Circle the single most anomalous point on the graph.

The temperature of the half-cells was maintained at 40°C. Suggest what error in the experimental set-up may have caused the anomaly.


.....[2

(iii) Use your graph and the equation to determine a value for $\log C_{\rm sat}$

$$16.1E_{cell} = \log C_{sat} - \log [Ag^{+}(aq)]$$

$$\log C_{\mathsf{sat}} = \dots \qquad [1]$$

(d)	То	To carry out these experiments, Ag+(aq) of concentration 2.0 mol dm-3 was prepared.					
	(i)	For experiment 6, calculate the volume of 2.0 mol dm ⁻³ Ag ⁺ (aq) needed to prepare exactly 250.0 cm ³ of Ag ⁺ (aq) in a 250.0 cm ³ volumetric flask.					
		volume = cm ³ [1]					
	(ii)	Name a suitable piece of apparatus which could be used to measure the volume calculated in (i).					
		[1]					
(e)	(i)	The relationship between the solubility product, $K_{\rm sp}$, and the concentration of the saturated solution of silver chloride, $C_{\rm sat}$, is shown.					
		$K_{\sf sp} = C_{\sf sat}^2$					
		Use this equation and your answer to (c)(iii) to calculate a value for $K_{\rm sp}$.					
		Give your answer to three significant figures.					
		(If you have no answer for (c)(iii) , use a value of -4.20 but this is not the true value.)					
		$K_{sp} = $ [2]					

(ii) The solubility of AgC1 increases with temperature.
Using the axes below, sketch a graph to show how the $K_{\rm sp}$ of AgC l varies with temperature
Label both axes.
▶ [
The salt bridge in a concentration cell commonly contains a solution of one of the following compounds.
potassium chloride potassium nitrate sodium chloride
Identify which, if any, of these compounds would not be suitable for use in the salt bridge this experiment.
Explain your answer.

[Total: 16]

Q# 75/ ALvl Chemistry/2018/s/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org :o)

- 1 The Faraday constant is the charge in coulombs, C, carried by 1 mole of electrons.
 - (a) A student plans an electrolysis experiment to determine the Faraday constant.

The student was supplied with the following.

- 1.0 mol dm⁻³ copper(II) sulfate
- · clean, dry copper foil electrodes, labelled 'anode' and 'cathode'
- balance
- stop-clock
- ammeter
- · other equipment suitable for carrying out electrolysis

Draw a labelled diagram of the apparatus and chemicals the student should use in their electrolysis experiment. Include in your diagram the circuit connecting the anode and cathode.

should take when carrying out the experiment.	en
hazard: copper(II) sulfate solution causes skin irritation	
precaution	
hazard: copper(II) sulfate solution is toxic to aquatic life	
precaution	
	[2
	14

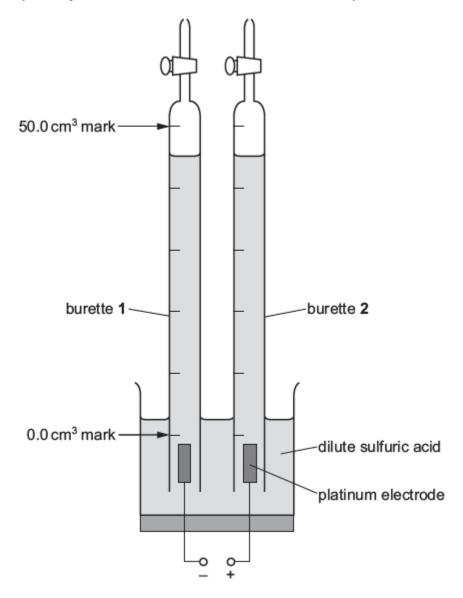
The student carried out the electrolysis for exactly 30 minutes with a current of 0.5A.

After the electrolysis was finished, the student removed the electrodes.

(b) Two of the hazards of using copper(II) sulfate solution are given below.

- The electrodes were then carefully washed in water and then dipped in propanone.
- The electrodes were dried by allowing the propanone to evaporate.
- (c) State the measurements the student would need to record to calculate the mass change of an electrode. Include the appropriate unit.

[1]


a)	experiment using the formula shown.				
	charge (C) = current (A) × time (s)				
	charge passed = C [1]				
e)	The mass change of the anode was –0.282 g.				
	Calculate the amount, in mol, of copper lost from the anode. Give your answer to 3 significant figures. $[A_r: Cu, 63.5]$				
	moles of copper lost from the anode = mol [1]				
	moles of copper lost from the arrote – from [1]				
f)	Use your answers to (d) and (e) to calculate the charge required to remove 1 mole of copper from the anode.				
	charge required to remove 1 mole of copper = C [1]				
g)	The theoretical charge required to remove 1 mole of copper from the anode into solution as copper(II) ions is $193000\mathrm{C}$. The Faraday constant is $96500\mathrm{C}\mathrm{mol^{-1}}$.				
	Explain why the theoretical charge is twice the Faraday constant.				
	[1]				

n)	A possible source of error is not drying the anode at the start of the experiment.
	Explain the effect, if any, on the calculated value of the Faraday constant if the anode is wet a the beginning of the experiment but dry at the end.
	effect
	explanation
	F4
	[1
i)	The student wanted to ensure that the anode was completely dry at the end of the experiment and decided to evaporate off the propanone using a blue Bunsen flame. The student noticed some blackening of the surface of the copper.
	Suggest what caused this blackening.
	[1
j)	The student calculated the mass change of the anode and the cathode after the experiment was complete.
	mass change of anode = $-0.282g$ mass change of cathode = $+0.217g$
	Suggest one reason why the mass gained at the cathode is not the same as the mass lost a the anode. Assume the student has recorded the mass changes correctly.
	[1
	[Total: 12

Q# 76/ ALvl Chemistry/2017/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :o)

Dilute sulfuric acid, H₂SO₄(aq), can be electrolysed using platinum electrodes and a direct current. Hydrogen gas is produced at the cathode and oxygen gas is produced at the anode. The two gases are collected separately in burettes filled with dilute sulfuric acid placed over each electrode.

reaction at electrode in burette 1: $2H^+(aq) + 2e^- \rightarrow H_2(g)$ reaction at electrode in burette 2: $H_2O(I) \rightarrow \frac{1}{2}O_2(g) + 2H^+(aq) + 2e^-$

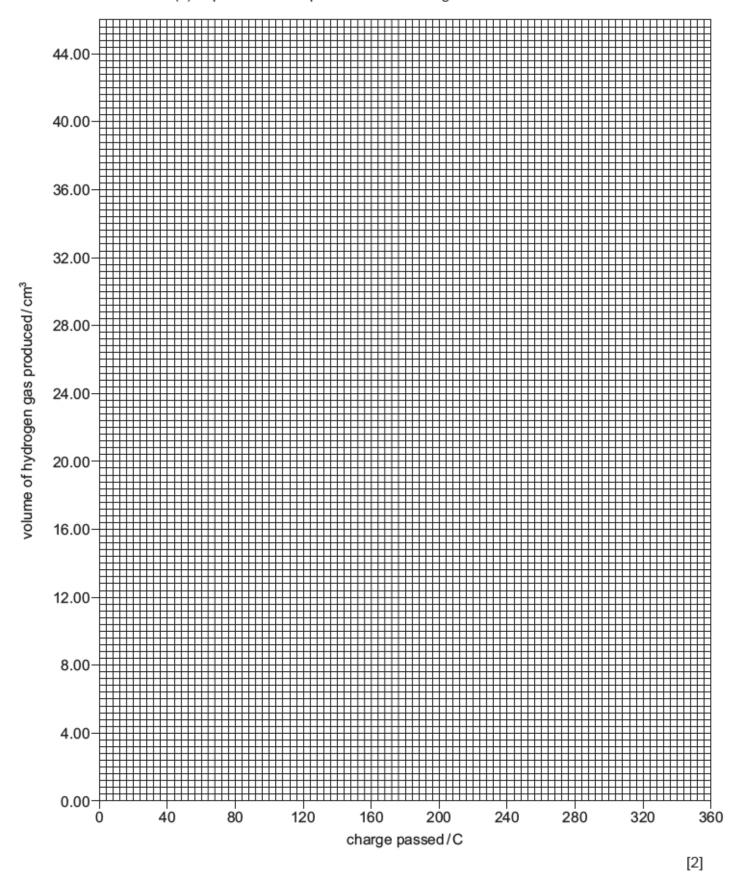
The production of hydrogen gas over time can be measured, and the data used to determine the charge of one mole of electrons, known as the Faraday constant, *F*.

(a) The volumes of hydrogen gas produced during the electrolysis process are recorded in the table.

Process the results to calculate the volume of hydrogen gas produced, in cm³, and the charge passed, in coulombs, C.

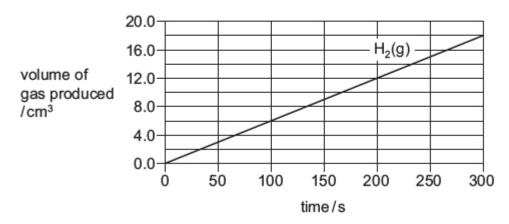
charge (C) = current (A)
$$\times$$
 time (s)

The current was kept constant at 0.80A.


time/s	reading on burette 1 /cm ³	volume of hydrogen gas produced/cm³	charge passed /C
0	46.20	0.00	
50	41.20		
100	36.20		
150	31.45		
200	25.80		
250	20.80		
300	16.40		
350	11.45		
400	6.80		
450	1.50		

[2]

(b) Plot a graph on the grid to show the relationship between volume of hydrogen gas produced and charge passed.


Use a cross (x) to plot each data point. Draw the straight line of best fit.

he volume of hydrogen gas produced per coulomb
t of the line of best fit.
ou used in your calculation.
co-ordinates 2
gradient =cm ³ C ⁻⁷
gen gas produced per coulomb.
for (d)(i) , you may use the value 0.148 cm ³ C ⁻¹ , but
room temperature and pressure.]
mol C ⁻¹ [1
quation for the production of $H_2(g)$ to calculate a nt (the charge of 1 mole of electrons).
$e^- \rightarrow H_2(g)$

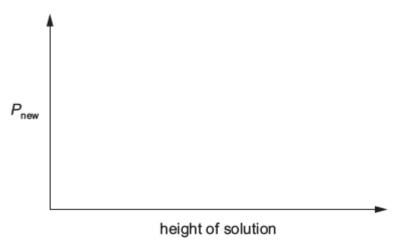
(e) (i) The graph below shows the relationship between volume of H₂(g) produced at the cathode and time, in a similar experiment.

Draw a line on the graph to show the relationship between volume of $O_2(g)$ produced at the anode and time in this experiment.

[1]

(ii) Suggest why the volume of O₂(g) measured in this experiment might be less than that shown by your drawn line.

Assume that no gas is lost from leaks.

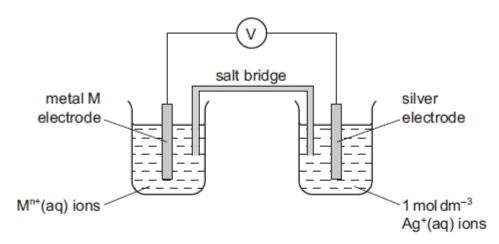

(f) In these experiments, the pressure of the gas inside the burette is assumed to be atmospheric pressure, P_{atm}.

However, the presence of water vapour and the mass of the solution in the burette change the pressure of the gas to P_{new} .

The expression below shows the relationship between P_{new} and P_{atm} .

$$P_{\text{new}} = P_{\text{atm}} - 2.81 - (9.81 \times \text{height of solution in burette})$$

(i) Use the expression to sketch a graph on the axes below to show the relationship between P_{new} and the height of solution in the burette.


	(ii) State how P_{new} changes the value of the Faraday constant calculated at P_{atm} in (d)(iii).					
	Explain your answer.					
					[1]	
(g)			er suggested it would be cheaper to use co of dilute sulfuric acid.	opper rath	er than platinum electrodes	
			half-equation	E°/V		
			$2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$	0.00		
			$Cu^{2+}(aq) + 2e^- \rightleftharpoons Cu(s)$	+0.34		
			$\frac{1}{2}O_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons H_2O(I)$	+1.23		
			ation in the table, suggest what effect, e volume of gas produced at each elect			
	cathode .					
	anode					
					[3]	

[Total: 16]

Q# 77/ ALvl Chemistry/2014/s/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :o)

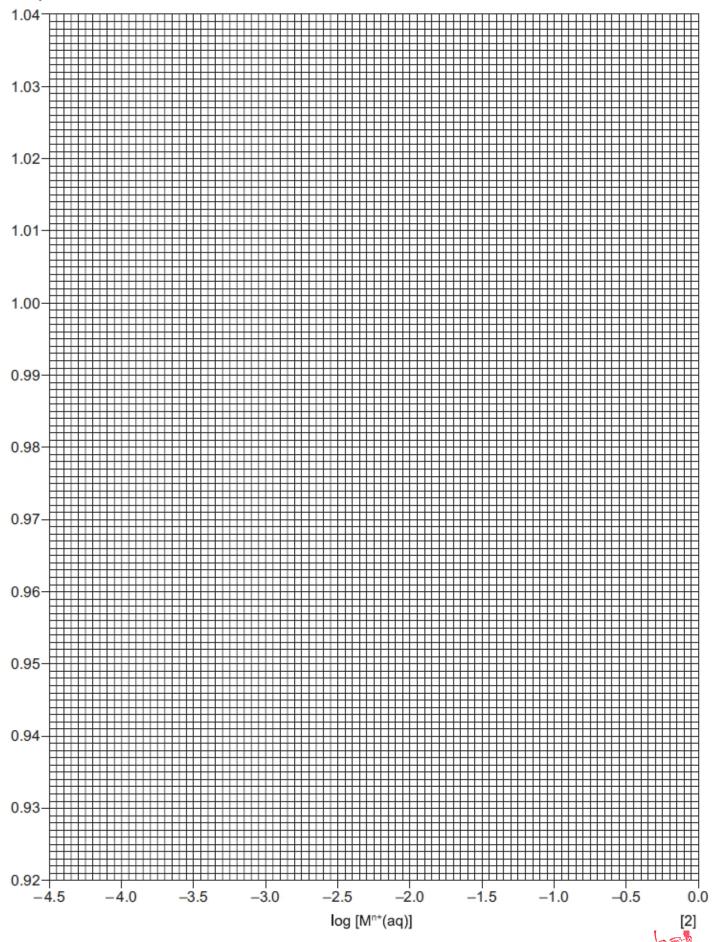
2 An experiment was set up to investigate how the cell potential of a cell containing a metal, M, in contact with an aqueous solution of its ions, Mⁿ⁺(aq) (where n = 1, 2 or 3), changed as Mⁿ⁺(aq) was diluted.

Since a standard hydrogen half-cell was not available, a standard half-cell consisting of silver in contact with a 1 mol dm⁻³ solution of silver ions was used to connect to the half-cell with M in contact with Mⁿ⁺(aq).

The metal electrodes of the two half-cells were connected via a voltmeter, reading to two decimal places. This was used to measure the cell potential of the cell.

The cell potential was measured for various concentrations of Mⁿ⁺(aq) and the results obtained are shown in the table below.

(a) Complete the third column of the table below. Give each answer to two decimal places.

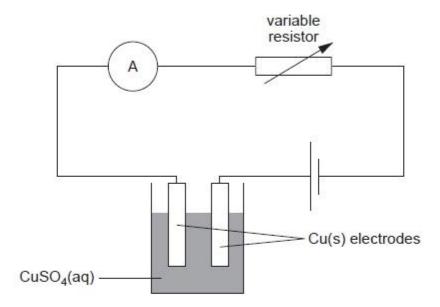

concentration of Mn+(aq)/moldm ⁻³	cell potential /V	log [M ⁿ⁺ (aq)]
5.00 × 10 ⁻¹	0.94	
1.00 × 10 ⁻¹	0.96	
4.00 × 10 ⁻²	0.97	
1.00 × 10 ⁻²	0.99	
5.00 × 10 ⁻³	1.00	
2.00 × 10 ⁻³	1.01	
8.00 × 10 ⁻⁴	1.02	
2.00 × 10 ⁻⁴	1.04	

[2]

(b) Plot a graph to show the relationship between log [Mn+(aq)] and the cell potential measured and draw the line of best fit.

	e there any anomaious points on your graph? If so, circle those points. Give a reason foi ur answer.
	[2
	s known that the cell potential of a cell, E , is related to the standard electrode potential, E° the equation:
	$E = E^{\circ} - \frac{0.06 \log [M^{n+}(aq)]}{n}$
(i)	Use your graph to determine the charge, n, of the Mn+ ions. Draw appropriate lines or your graph to enable you to calculate its slope and show in the space below, how n was calculated.
	[3
(ii)	Use your graph to determine the standard electrode potential, E^{\bullet} , of the cell.
	[1
Ca	e standard electrode potential for silver is +0.80 V. Iculate the standard electrode potential for the metal, M. Use the data given on page 12 to ggest the identity of M.

-		[1]
	The solutions contained in the two half-cells must be connected using a salt bridge. i) Why is a salt bridge necessary?	
(i	i) Which (if any) of the following salts would be suitable to use in the salt bridge: potassium chloride, potassium nitrate, potassium sulfate?	[1]
	If you consider any to be unsuitable, explain why.	


E° in decreasing order of oxidising power

Electro	E•/V		
F ₂ + 2e ⁻	\rightleftharpoons	2F-	+2.87
$S_2O_8^{2-} + 2e^-$	\rightleftharpoons	2SO ₄ 2-	+2.01
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1.77
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	Mn ²⁺ + 4H ₂ O	+1.52
PbO ₂ + 4H+ + 2e ⁻	\rightleftharpoons	Pb ²⁺ + 2H ₂ O	+1.47
Cl ₂ + 2e ⁻	\rightleftharpoons	2C1-	+1.36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+1.33
Br ₂ + 2e ⁻	\rightleftharpoons	2Br-	+1.07
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	NO ₂ + H ₂ O	+0.81
Ag+ + e-	\rightleftharpoons	Ag	+0.80
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+0.77
I ₂ + 2e ⁻	\rightleftharpoons	2I-	+0.54
$O_2 + 2H_2O + 4e^-$	$\stackrel{\longleftarrow}{}$	40H-	+0.40
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0.34
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2 + 2H_2O$	+0.17
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0.15
$S_4O_6^{2-} + 2e^-$	\rightleftharpoons	2S ₂ O ₃ ²⁻	+0.09
2H+ + 2e-	\rightleftharpoons	H ₂	0.00
Pb ²⁺ + 2e ⁻	\leftarrow	Pb	-0.13
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0.14
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0.44
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0.76
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2.38
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2.87
K+ + e-	\rightleftharpoons	K	-2.92

- 2 A student reads about the electrolysis of aqueous copper(II) sulphate and makes the following notes.
 - reaction at the cathode $Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$ • reaction at the anode $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^-$
 - 1 mol of Cu(s) is deposited on the cathode by 2 mol of electrons.
 - The Faraday constant is the charge in coulombs, C, on 1 mol of electrons.
 - The Faraday constant = 9.5 × 10⁴ C mol⁻¹.

The student realises that a value for the Faraday constant can be determined experimentally using the following apparatus.

Method

- The cathode is cleaned and weighed before being placed in the copper(II) sulphate solution.
- The circuit is completed and the current set at 0.3 A by adjusting the variable resistor.
- The current is maintained at 0.3 A for exactly 40 minutes at which point the circuit is broken.
- The cathode is removed from the solution and carefully washed with distilled water to remove any copper(II) sulphate solution.
- Distilled water is removed from the cathode by rinsing it with propanone in which the water dissolves.
- The cathode is finally dried by allowing the propanone to evaporate from its surface.
- The cathode is reweighed and placed back in the solution.
- A constant current of 0.3 A is passed for a further 40 minutes when the rinsing, drying and weighing are repeated.
- This procedure is repeated a further 8 times.

The results of the experiment are recorded below.

Α	В	С	D	E	F
time	mass of cathode				
/minutes	/g				
0	115.74				
40	115.97				
80	116.22				
120	1 <mark>1</mark> 6. 4 6				
160	116.70				
200	116.94				
240	117.19				
280	117.49				
320	117.67				
360	117.92				
400	118.14				

(a) Use the additional columns of the table to record the charge passed and the mass of copper deposited on the cathode.

[charge in coulombs = time in seconds × current in amps; 1 minute = 60 seconds]

You may use some or all of the columns. Label the columns you use, including the units and an equation to show how the value is calculated. [2]

(0)	the line of best-fit. By reference to the instructions for the experiment suggest an explanation for the anomaly.
	[2]
(d)	The balance used by the student weighed to 2 decimal places. By reference to the results of the experiment explain why it would have been more appropriate to use an analytical balance weighing to 4 decimal places.
	[1]
(e)	Draw construction lines on the graph to derive relevant values and use them to calculate a numerical value for the Faraday constant.
	reaction at the cathode $Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$
	[A _r : Cu; 63.5]
	The value of the Faraday constant determined in this experiment is

r)	the experime	ng the data you have processed and the graph you have drawn, decide it ental procedure described is suitable for the determination of the Faraday plain your reasoning.
		[2]
g)		neasurements could be made during the course of the experiment to provide ata to confirm the determined value of the Faraday constant?
		[1]
1)		ent, performing the same experiment, plotted the mass of copper deposited and obtained the results below.
	mass of copper / g	
		time / minutes
	Making refer this graph.	ence to the experimental method, suggest an explanation for the shape of
		[1]
		[Total: 15]

Mark Scheme ALvl Chem 24 EQ P5 22w to 02s Paper 5 Electrochemistry 103marks

Q# 72/ ALvl Chemistry/2019/w/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org :0)

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1			
1(a)(i)	M1: moles of Y_2O_3 = 0.750 ÷ (2 × 88.9 + 3 × 16.0) = 0.750 ÷ 225.8 = 3.32 × 10 ⁻³ (mol) 3.3215235 × 10 ⁻³		
	M2: mass of BaCO ₃ = $4 \times 3.32 \times 10^{-3} \times (137.3 + 12.0 + 3 \times 16.0)$ = $4 \times 3.32 \times 10^{-3} \times 197.3$ = 2.62 (g) 2.6213463		
	M3: mass of CuO = 6 × 3.32 × 10 ⁻³ × (63.5 + 16.0) = 6 × 3.32 × 10 ⁻³ × 79.5 = 1.58 (g) 1.5813667		
1(a)(ii)	heat solid again (and allow to cool) AND (to) constant mass		
1(b)(i)	(Prevents) reaction of Cu ²⁺ with I ⁻ OR (prevents) formation of CuI / Cu ⁺ / copper(I) OR (prevents) oxidation of I ⁻ (to I ₂) by Cu ²⁺		
1(b)(ii)	I ⁻ is oxidised (to I ₂) in acidic solution		
1(b)(iii)	2A		
1(c)(i)	1.0 × 250.0 / 1000 × 294.0 = 73.5 (g)		
1(c)(ii)	M1: Dissolve / make a solution in (beaker) in (small volume of distilled water)		
	M2: Add / transfer solution to a 250 cm ³ volumetric flask		
	M3: Make to mark of (volumetric) flask with distilled water and the washings		
1(d)	M1: titres are not concordant		
	M2: repeat titration until concordant titres are obtained OR improved valid experimental technique		

Q# 73/ ALvl Chemistry/2019/s/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org :0)

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

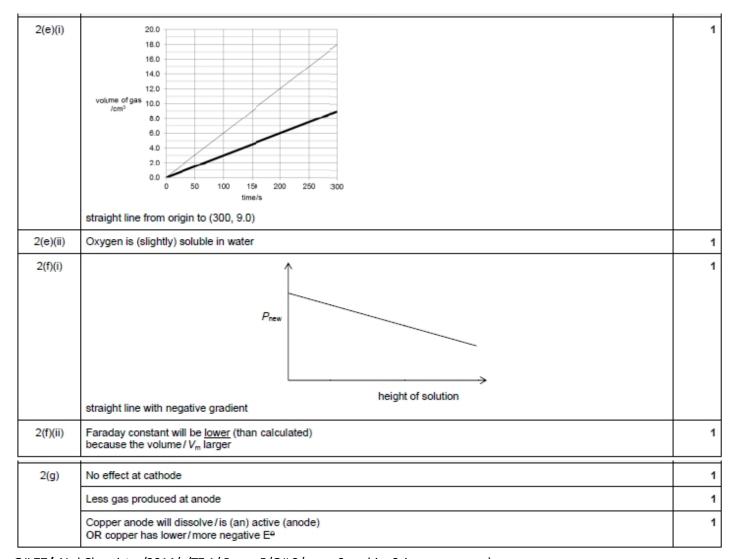
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1(a)	P = Voltmeter Q = Salt bridge Conc = 1(.00) mol dm ⁻³	1
1(b)(i)	100 / 1000 □ 0.200 = 0.020 moles Volume of 0.500 mol dm ⁻³ = 0.020/0.500 = 40(.0) cm ³	1
1(b)(ii)	M1 Transfer 40.0 cm³ of 0.500 mol dm⁻³ solution into a (100.0 cm³) volumetric flask using a burette	1
	M2 Make up to the mark / line with distilled water. (Stopper and shake).	1

1(b)(iii)	[Mn²*] Ce /mol dm ⁻³	II Potential	Log [Mn²+]	Electrode potential (manganese half-cell),E / V	2
	5.0 🗆 10 ⁻¹ +1.52	29	-0.30	-1.189	
	2.0 🗆 10 ⁻¹ +1.54	11	-0.70	-1.201	
	1.0 🗆 10 ⁻¹ +1.55	50	-1.00	-1.210	
	7.5 🗆 10 ⁻² +1.55	53	-1.12	-1.213	
	2.5 🗆 10 -2 +1.56	67	-1.60	-1.227	
	8.0 \square 10 ⁻³ +1.58	32	-2.10	-1.242	
	6.0 □ 10 -3 +1.59	90	-2.22	-1.250	
	4.0 □ 10 -3 +1.59	91	-2.40	-1.251	
	3.0 □ 10 -3 +1.59	94	-2.52	-1.254	
	5.0 □ 10 → +1.61	17	-3.30	-1.277	
	1 mark for each correct column				
1(c)	M1 Correctly plotted data points				1
	M2 Accurate line of best fit				1
	Log(#K5)				
	1-10				
	ha.				
	/				
	/ ***				
	/ 20				
	/ 100				
	76				
	4.48				
	/ ***				
	f				
	/ × × × ×				
	() () () () () ()				
	4-30				
44.00	D				
1(d)(i) 1(d)(ii)	Ring around point at -2.22, -1.250 (The point is below the line) The solution is mo	ore dilute then i	t chould be		1
T(G)(II)		ore under thair i	t should bo.		
1(e)	_1.18v				1
1(f)(i)	M1 Points read from the graph				1
	M2 Gradient calculated correctly				1
1(f)(ii)	M1 Gradient = 0.059/z z = 0.059/gradie	ent			1
	0.059 / 0.0293 = 2.01				
	M2 Mn ²⁺				1
1(g)	The equilibrium between the metal and its ions / the tendency to ionise / oxidise increases.	s moves to prod	duce more Mn ²⁺ or e	electrons / more reaction Mn → Mn²+ + 2e ⁻	1

2(a)(i)	Temperature / the	ermostatically controlled water bath		
2(a)(ii)	water may evapor	rate / [Ag*] will change		
2(b)	-log [Ag*(aq)]	16.1E _{cel} / V		
	3.00	-1.56		
	2.30	-2.25		
	2.00	-2.56		
	1.60	-2.75		
	1.30	-3.25		
	1.00	-3.56		
	0.70	-3.85		
	0.30	-4.25		
	-0.18	-4.73		
	M1 log [Ag ⁺] data M2 16.1E _{cell} data (
2(c)(i)		-log([Ag+(aq)])		
	-0.50	0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50		
	-1.00			
	-1.50			
	-2.00 -2.50			
	16.1E _{cell} -3.00			
	-3.50			
	-4.00 -4.50			
	-5.00			
	-5.50			
		s plotted correctly		
	M2 Best-fit straig	Jht line drawn		
2(c)(ii)	M1 Point at (1.60,	,-2.75) circled		
	M2 Not concentra	rated enough / more dilute / less than 0.025 moldm ⁻³		
2(c)(iii)	intercept at -log [/	[Ag*(aq)] = 0 read and recorded correctly		
	12.5 / 12.50 cm ³			
2(d)(i)	12.57 12.50 GH			
2(d)(i) 2(d)(ii)	burette			
	burette	10 ⁻⁵) ² = 7.95 □ 10 ⁻¹⁰		
2(d)(ii) 2(e)(i)	burette M1 K _{sp} = (2.82 □ 1	10 ⁻⁵) ² = 7.95 □ 10 ⁻¹⁰		
2(d)(ii)	burette M1 K _{sp} = (2.82 □ 1	10 ⁻⁵) ² = 7.95 □ 10 ⁻¹⁰		
2(d)(ii) 2(e)(i)	burette M1 K _{sp} = (2.82 □ 1	10 ⁻⁵) ² = 7.95 □ 10 ⁻¹⁰		
2(d)(ii) 2(e)(i)	burette M1 K _{sp} = (2.82 □ 1	10 ⁻⁵) ² = 7.95 □ 10 ⁻¹⁰		
2(d)(ii) 2(e)(i)	burette M1 K _{sp} = (2.82 □ 1	10 ⁻⁵) ² = 7.95 □ 10 ⁻¹⁰		
2(d)(ii) 2(e)(i)	burette M1 K _{sp} = (2.82 □ 1	10 ⁻⁵) ² = 7.95 □ 10 ⁻¹⁰		
2(d)(ii) 2(e)(i)	burette M1 K _{sp} = (2.82 🗆 1 M2 3sf	10 ⁻⁵) ² = 7.95 \(\text{D} \) 10 ⁻¹⁰		
2(d)(ii) 2(e)(i)	burette M1 K _{sp} = (2.82 □ 1			
2(d)(ii) 2(e)(i)	burette M1 K _{sp} = (2.82 🗆 1 M2 3sf	10 ⁻⁵) ² = 7.95 \(\text{10}^{-10} \) temperature		

2(f)	M1 Potassium chloride AND / OR sodium chloride	1
	M2 Chloride ions would form a precipitate with Ag* ions / reduce [Ag*] concentration	


Q# 75/ ALvl Chemistry/2018/s/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org :o)

1(a)	Complete circuit with ammeter in series and DC power supply				
	Anode, cathode and solution labelled				
1(b)	wear gloves				
	do not dispose into the water waste / sink				
	OR do not put down drain / sewage				
	OR put in waste bottles				
1(c)	Mass (of electrode) before and after experiment AND mass unit				
1(d)	charge = 0.5 □ 30 □ 60 = 900 C				
1(e)	0.282 / 63.5 = 4.44 □ 10 ⁻³ (mol) OR 0.00444				
1(f)	(900 / 4.44 □ 10 ⁻³)= 202702.7027 C				
1(g)	2 moles of electrons are produced / removed / released (so 2 Faradays OR 2 □ 96 500)				
1(h)	(Faraday) value is smaller AND (apparent) mass / moles / amount is more (for same charge passed)				
1(i)	CuO is formed / oxidation of copper / carbon / soot is formed				
1(j)	Some copper falls off the electrode during electrolysis / falls to the bottom of the beaker OR Some copper is lost during washing				

Q# 76/ ALvl Chemistry/2017/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :0)

2(a)	time /s	burette reading / cm³	volume (of hydrogen) /cm³	charge /C		
	0	46.20	0.00	0		
	50	41.20	5.00	40		
	100	36.20	10.00	80		
	150	31.45	14.75	120		
	200	25.80	20.40	160		
	250 20.8	20.80	20.80 25.40	200		
	300	16.40	29.80	240		
	350	11.45	34.75	280		
	400	6.80	39.40	320		
	450	1.50	44.70	360		
	volumes of hy charge correct	drogen correct t	to 2 d.p.			
2(b)	All ten points plotted correctly					
	Best-fit straigh	t line drawn				
2(c)	Yes, (the data	is reliable beca	use) most of the	points are on		
2(d)(i)	(d)(i) co-ordinates read and recorded correctly					
	gradient deten	mined				
2(d)(ii)	= (i) ÷ 24000					
2(d)(iii)	= 1 ÷ (2 × (ii))					

Q# 77/ ALvl Chemistry/2014/s/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :o)

2 (a)	[M ⁿ⁺ (aq)] / mol dm ⁻³	EMF / V	log[M ⁿ⁺ (aq)]		
	5.00 × 10 ⁻¹	0.94	-0.30		
	1.00 × 10 ⁻¹	0.96	-1.00		
	4.00 × 10 ⁻²	0.97	-1.40		
	1.00 × 10 ⁻²	0.99	-2.00		
	5.00 × 10 ⁻³	1.00	-2.30		
	2.00 × 10 ⁻³	1.01	-2.70		
	8.00 × 10 ⁻⁴	1.02	-3.10		
	2.00 × 10 ⁻⁴	1.04	-3.70		
	Correctly calculated values				
	All data to 2 decimal places	[1]			
(b)	All 8 points present and plot	tted correctly		[1]	
	Best fit continuous straight I	ine		[1]	

There are no anomalous points			
Variations in points due to rounding.	[1]		
OR			
Variations arise from being to just 2dp.			
Appropriately drawn lines on graph	[1]		
Calculates correctly gradient of the graph	[1]		
Uses -0.06/n = gradient to calculate n = 2 Correct working must be shown	[1]		
Extrapolates graph to obtain intercept on y -axis and deduces E^{e} for the cell to a minimum of 2 dp e.g. $(+)0.93(V)$			
OR			
Calculates a value for E° using the electrode potential expression and candidate's final value for n calculated in (d)(i) or candidate's gradient and a data point on the candidate's line.			
E° for M, $(0.80 - 0.93) = -0.13$ AND Metal is Pb (allow Sn on -0.14) allow ecf from (d)(ii)	[1]		
$2Ag^+ + Pb \rightarrow 2Ag + Pb^{2+}$	[1]		
To allow movement of ions OR to maintain charge / ion balance	[1]		
If lead given in (e) then only potassium nitrate is suitable	[1]		
If potassium chloride given as unsuitable, then accept precipitations with silver OR lead (ions)	[1]		
If potassium sulfate given as unsuitable, then accept precipitations with lead (ions) ONLY			
If tin given in (e) potassium sulfate or potassium nitrate are suitable			
precipitation would occur just with potassium chloride with silver (ions) ONLY			
	Variations in points due to rounding. OR Variations arise from being to just 2dp. Appropriately drawn lines on graph Calculates correctly gradient of the graph Uses -0.06 /n = gradient to calculate n = 2 Correct working must be shown Extrapolates graph to obtain intercept on y-axis and deduces E ^a for the cell to a minimum of 2 dp e.g. (+)0.93(V) OR Calculates a value for E ^a using the electrode potential expression and candidate's final value for n calculated in (d)(i) or candidate's gradient and a data point on the candidate's line. E ^a for M, (0.80 - 0.93) = -0.13 AND Metal is Pb (allow Sn on -0.14) allow ecf from (d)(ii) 2Ag ⁺ + Pb → 2Ag + Pb ²⁺ To allow movement of ions OR to maintain charge / ion balance If lead given in (e) then only potassium nitrate is suitable If potassium chloride given as unsuitable, then accept precipitations with lead (ions) ONLY If potassium sulfate given as unsuitable, then accept precipitations with lead (ions) ONLY If tin given in (e) potassium sulfate or potassium nitrate are suitable precipitation would occur just with potassium chloride with silver (ions)		

Q# 78/ ALvl Chemistry/2008/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :o)

Question	Sections	Statement	Indicative material	Mark
2 (a)	ACE Data	D1 D2	Labels additional columns: the charge passed through the electrolysis cell and the mass of copper deposited on the cathode. (Accept either a correct name or the correct equation.) Appropriate units, however, must be given (accept 'Q' instead of charge). Must have two derived columns.	[1]
			Correct subtractions for the mass of copper deposited. (Allow 2 errors and 0 for 0.00, all data to 2 dp. If only the various intermediate masses are recorded, this second mark is not to be awarded.)	[1]
(b)	ACE Data	D3	A. Plots mass of copper deposited (y-axis) against charge passed (x-axis) with correct unambiguous labels and units. (Any other plot can access marks B, C and D)	[1]
		D3	B. Suitable scales selected – data to be plotted over more than half of each axis. This mark stands separate from A.	[1]
		D3	C. Line of best-fit drawn – passing through origin or through an intercept of 115.74. (Some part of the line drawn must cut/touch the origin or the 115.74 intercept.)	[1]
		D3	D. Check that all the points are on or <u>very close</u> to the line except the 1.75/5040 point whose plotting accuracy must be checked. If they are, award the mark. At least nine points must have been plotted. (For very unusual graphs, check the plotting of the first three points from the table.) The 'best' straight line is between the origin and the last point (2.40/7200). Do not penalise the same unit error twice.	[1]
			Plots of (i) mass difference vs time (ii) mass of cathode vs charge (iii) mass of cathode vs time can access the marks in 2(c), 2(d), 2(e) and 2(f).	19
(c)	ACE Evaluation	E1	Identifies the single point that does not lie on the line of best-fit (1.75 g Cu at 5040 coulomb) (either by giving the figures here or by suitably marking the graph). If there is another more anomalous point due to erroneous plotting accept this point instead.) (If time has been plotted, allow this also if correctly dealt with.)	[1]
		E2	Suggests an appropriate reason. (Mass of copper is too high – has some residual liquid on the copper). The comment must relate to the position of the selected point. If no point is identified there is no second mark.	[1]

Α	В	С	D	E
time /minutes	mass of cathode	mass of copper deposited (B -115.74) /g	time (A × 60) /seconds or /s	charge (D × 0.3) or (18A) /C
0	115.74	0.00	0.00	0.00
40	115.97	0.23	2400	720
80	116.22	0.48	4800	1440
120	116.46	0.72	7200	2160
160	116.70	0.96	9600	2880
200	116.94	1.20	12000	3600
240	117.19	1.45	14400	4320
280	117.49	1.75	16800	5040
320	117.67	1.93	19200	5760
360	117.92	2.18	21600	6480
400	118.14	2.40	24000	7200

Question	Sections	Statement	Indicative material	Mark	
(d) ACE E5 S		E5	% error is decreased for the small masses involved.		
(e)	ACE Data	D2	Enough construction lines on the graph to lead to the correct readings of the mass of copper and the charge.	[1]	
		D2	Calculation of the correct answer (to 2 s.f. [however, allow the candidate to give the answer to no more than 5 s.f.]) corresponding to the readings from the graph. The reading should be within 50 C and 0.01 g of the Examiners values. (An answer must be given – the correct value is about 9.5 × 10 ⁴ C mol ⁻¹ .)	[1]	
(f)	ACE Conclusions	C1	Refers to straight line through origin (or 115.74) or few points off the line as supporting evidence.	[1]	
		C1	If the candidate's answer is 9.5 × 10 ⁴ to 2 sf allow the mark for comments referring to 'close agreement' with the real/given value etc. (must be comparative)	[1]	
(g)	ACE Conclusions	C3	Candidate realised that the (loss in) mass of the anode could also have been measured and recorded. (Ignore all other suggestions.)	[1]	
(h)	ACE Evaluation	E1	Any comment should refer to a decrease in the current or an increased resistance in the circuit.	[1]	

