
iG Chem 3 EQ P3 15w to 01s 4Students NEW 309marks 54Pgs

ALL PAPERS Topic Number

			•											
	Total	1	3	4	5	6	7	8	9	10	11	12	13	14
Total Marks	2320	76	309	155	131	26	252	245	85	261	224	76	24	472
% of Marks	2336	3.3	13.2	6.6	5.6	1.1	10.8	10.5	3.6	11.2	9.6	3.3	1.0	20.2
# of Questions		20	58	39	25	6	46	53	19	54	46	14	5	79
Average marks per Q		3.8	5.3	4.0	5.2	4.3	5.5	4.6	4.5	4.8	4.9	5.4	4.8	6.0

	1st Paper	1st P rank	Last Paper	Last P rank	Total # Papers	Marks/ paper	Theor. All Papers	Actual All Marks	Difference	Weight per paper	Weight per mark
Paper 1	2002s	5	2012w	26	22	40	880	869	-11	30	0.75
Paper 3	2001w	4	2015w	32	29	80	2320	2336	16	50	0.625
Paper 6	2001w	4	2015w	32	29	60	1740	1890	150	20	0.625

Topic	14	3	10	7	8	11	4	5	9	1	12	6	13
Rank ALL Papers	2	4	5	3	1	6	9	8	11	7	12	10	13
Rank P3: A* Focus	1	2	3	4	5	6	7	8	9	10	10	12	13
All Syllabus Word Count RANK	1	2	5	3	6	4	9	7	10	8	12	11	13

CIE iGCSE Chemistry Syllabus Details

(syllabus code 0620)

The core material is examined in all three exam papers (papers 1,3 and 6) and is intended to assess understanding up to a grade C level. From 2016, the Supplement material is **examined in all three papers**, however, before 2016 papers 1 and 6 did not contain any Supplement material. If the number of marks that can be awarded above a C grade will remain the same, in practice this means that:

- 1. Paper 3 will contain fewer Supplement marks, so more core marks so will be easier (if you can answer the Paper 3 questions from before 2016 then you will be fine)
- 2. Papers 1 and 3 will contain Supplement marks, unlike in all papers before 2016, so will assess material they have not done before, so will be harder because of the questions and as there are no previous questions to practice on, will be harder because of the newness.

Material that is new or changed in 2016 is highlighted with BLACK LINES next to it.

3. Atoms, elements and compounds

3.1 Atomic structure and the Periodic Table

Core

- State the relative charges and approximate relative masses of protons, neutrons and electrons
- Define proton number (atomic number) as the number of protons in the nucleus of an atom
- Define nucleon number (mass number) as the total number of protons and neutrons in the nucleus of an atom
- Use proton number and the simple structure of atoms to explain the basis of the Periodic Table (see section 9), with special reference to the elements of proton number 1 to 20
- Define isotopes as atoms of the same element which have the same proton number but a different nucleon number
- State the two types of isotopes as being radioactive and non-radioactive
- State one medical and one industrial use of radioactive isotopes
- Describe the build-up of electrons in 'shells' and understand the significance of the noble gas electronic structures and of the outer shell electrons (The ideas of the distribution of electrons in s and p orbitals and in d block elements are **not** required.)
 Note: a copy of the Periodic Table, as shown in the Appendix, will be available in Papers 1, 2, 3 and 4.

Supplement

 Understand that isotopes have the same properties because they have the same number of electrons in their outer shell

3.2.1 Bonding: the structure of matter Core Describe the differences between elements, mixtures and compounds, and between metals and non-metals Describe an alloy, such as brass, as a mixture of a metal with other elements	
3.2.2 Ions and ionic bonds Core Describe the formation of ions by electron loss or gain Describe the formation of ionic bonds between elements from Groups I and VII	Supplement Describe the formation of ionic bonds between metallic and non-metallic elements Describe the lattice structure of ionic compounds as a regular arrangement of alternating positive and negative ions
 3.2.3 Molecules and covalent bonds Core Describe the formation of single covalent bonds in H₂, Cl₂, H₂O, CH₄, NH₃ and HCl as the sharing of pairs of electrons leading to the noble gas configuration Describe the differences in volatility, solubility and electrical conductivity between ionic and covalent compounds 	Describe the electron arrangement in more complex covalent molecules such as N ₂ , C ₂ H ₄ , CH ₃ OH and CO ₂ Explain the differences in melting point and boiling point of ionic and covalent compounds in terms of attractive forces
3.2.4 Macromolecules Core Describe the giant covalent structures of graphite and diamond Relate their structures to their uses, e.g. graphite as a lubricant and a conductor, and diamond in cutting tools	Supplement Describe the macromolecular structure of silicon(IV) oxide (silicon dioxide) Describe the similarity in properties between diamond and silicon(IV) oxide, related to their structures
3.2.5 Metallic bonding	Supplement Describe metallic bonding as a lattice of positive ions in a 'sea of electrons' and use this to describe the electrical conductivity and malleability of metals

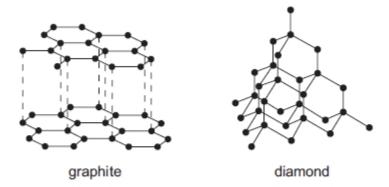
Q# 2/ iGCSE Chemistry/2015/w/Paper 31/

(a) Silicon(IV) oxide, SiO₂, has a macromolecular structure. Describe the structure of silicon(IV) oxide.[3] State three properties which silicon(IV) oxide and diamond have in common.[3] (iii) How could you show that silicon(IV) oxide is acidic and not basic or amphoteric? (b) Explain why the physical properties of carbon dioxide are different from those of diamond and silicon(IV) oxide.

.....[1]

Carbon and silicon are elements in Group IV. They both form oxides of the type XO2.

Q# 3/ iGCSE Chemistry/2015/w/Paper 31/


 (a) The symbols of six particles are shown be 	OW.
---	-----

		Na da Ni i di d	
		ect from the list of particles to answer the following questions. A particle may be selecte, more than once or not at all.	ted
	(i)	Which two ions have the same electronic structure?	[1]
	(ii)	Which ion has the same electronic structure as an atom of argon?	[1]
(1	iii)	Which atom can form an ion of the type X³-?	[1]
(1	iv)	Which atom can form a hydride which has a formula of the type XH ₄ ?	[1]
(b)	(i)	How many protons, neutrons and electrons are there in one copper(II) ion ${}^{\mbox{\ensuremath{g}}\mbox{\ensuremath{C}}\mbox{\ensuremath{U}}^{2^+}}$?	
		number of protons	
		number of neutrons	
		number of electrons	[2]
	(ii)	⁴⁵ Sc represents an atom of scandium.	
		How many nucleons and how many charged particles are there in one atom of scandiu	m?
		number of nucleons	
		number of charged particles	[2]
(c)	Two	o different atoms of sodium are 11Na and 11Na.	
	(i)	Explain why these two atoms are isotopes.	
			 [2]
	(ii)	²⁴ Na is radioactive. It changes into an atom of a different element which has one me proton.	ore
		Identify this element.	
(1	iii)	State two uses of radioactive isotopes.	[1]

Q# 4/ iGCSE Chemistry/2014/w/Paper 31/

2 Two macromolecular forms of carbon are graphite and diamond. The structures of graphite and diamond are given below.

(a)	Exp	plain in terms of its structure why graphite is soft and is a good conductor of electricity.	
			[3]
(b)	Sta	te two uses of graphite which depend on the above properties.	
	It is	soft	
		a good conductor of electricity	
		a good conductor or electricity	
			[2]
(c)	Sili	con(IV) oxide also has a macromolecular structure.	
	(i)	Describe the macromolecular structure of silicon(IV) oxide.	
	(ii)	Predict two physical properties which diamond and silicon(IV) oxide have in common	
			[2]

Q# 5/ iGCSE Chemistry/2014/w/Paper 31/

		2]
(ii)	Lithium nitride is an ionic compound. Draw a diagram which shows its formula, the charge on the ions and the arrangement of the valency electrons around the negative ion.	S
	Use x for an electron from a lithium atom. Use o for an electron from a nitrogen atom.	
	[2	2]
Nitr	ogen fluoride is a covalent compound.	
(i)	Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound nitrogen trifluoride, NF ₃ .	е
	Use x for an electron from a nitrogen atom. Use o for an electron from a fluorine atom.	
	[2	2]
(ii)	Lithium nitride has a high melting point, 813 °C. Nitrogen trifluoride has a low melting point -207 °C.	t,
	Explain why the melting points are different.	
		2]
	(i) (ii)	(ii) Lithium nitride is an ionic compound. Draw a diagram which shows its formula, the charge on the ions and the arrangement of the valency electrons around the negative ion. Use x for an electron from a lithium atom. Use o for an electron from a nitrogen atom. (i) Draw a diagram showing the arrangement of the valency electrons in one molecule of th covalent compound nitrogen trifluoride, NF ₃ . Use x for an electron from a nitrogen atom. Use o for an electron from a fluorine atom. (ii) Lithium nitride has a high melting point, 813 °C. Nitrogen trifluoride has a low melting point. Explain why the melting points are different.

7 Nitrogen can form ionic compounds with reactive metals and covalent compounds with non-metals.

Q# 6/ iGCSE Chemistry/2014/s/Paper 31/

1 The table below gives the composition of six particles which are either atoms or ions.

particle	number of protons	number of neutrons	number of electrons
Α	33	40	33
В	19	20	18
С	34	45	36
D	33	42	33
E	13	14	13
F	24	28	21

(a)	Which particles are atoms? Explain your choice.	
		2
(b)	Which particle is a negative ion and why has this particle got a negative charge?	
		2
(c)	Which particles are positive ions?	
		1
(d)	Explain why particle A and particle D are isotopes.	
		2
Q# 7/ iG	CSE Chemistry/2013/w/Paper 31/	
	ad is an excellent roofing material. It is malleable and resistant to corrosion. Lead rapid comes coated with basic lead carbonate which protects it from further corrosion.	ly
(a)	Lead has a typical metallic structure which is a lattice of lead ions surrounded by a 'se of mobile electrons. This structure is held together by attractive forces called a metall bond.	
	(i) Explain why there are attractive forces in a metallic structure.	

	(ii)	Explain why a metal, such as lead, is malleable.	
				. [2]
			emistry/2013/s/Paper 31/ Q6 uctural formula of hydrazine is given below.	
			H H	
	the Use	cova x to	diagram showing the arrangement of the valency electrons in one molecule alent compound hydrazine. o represent an electron from a nitrogen atom. o represent an electron from a hydrogen atom.	of
			emistry/2013/s/Paper 31/	[3]
٥			re three types of giant structure - ionic, metallic and giant covalent. In ionic compound, the ions are held in a lattice by strong forces.	
			Explain the term lattice.	
				[2]

(ii) Explain how the ions are held together by strong forces.

(b)	Describe the bonding in a typical metal.
	[3]
(c)	The electrical conductivities of the three types of giant structure are given in the following table.

type of structure	conductivity of solid	conductivity of liquid
ionic	poor	good
metallic	good	good
giant covalent	poor	роог

Explain the differences in electrical conductivity between the three types of giant structure. and the difference, if any, between the solid and liquid states of the same structure.							
[5]							

Q# 10/ iGCSE Chemistry/2012/w/Paper 31/ Q5

(c) The structural formula of carbonyl chloride is given below.

Draw a diagram showing the arrangement of the outer (valency) electrons in one molecule of this covalent compound.

Use o to represent an electron from a carbon atom.

Use x to represent an electron from a chlorine atom.

Use • to represent an electron from an oxygen atom.

			Chemistry/2012/w/Paper 31/ Q2 pactive isotope of iodine, 131 sis used to treat cancer.	
	(i)	De	efine the term isotope.	
				2]
	(ii)	Но	ow many protons, electrons and neutrons are there in one atom of $^{131}_{53}$ I?	
		nu	mber of protons	
		nu	mber of electrons	
		nu	mber of neutrons	[2]
	(iii)	54	hen this isotope, $^{131}_{53}I$, emits radiation, a different element with a proton number is formed. hat is the name of this element?	of
				[1]
O# 1	2/ iG	icse (Chemistry/2012/w/Paper 31/	
4	Silie	con() ey ha	IV) oxide, SiO ₂ , and zirconium(IV) oxide, ZrO ₂ , are both macromolecules. ave similar physical properties but silicon(IV) oxide is acidic and zirconium(IV) oxideric.	de
	(a)	Def	fine the term macromolecule.	
				 [1]
	(b)	(i)	Predict three physical properties of these two oxides.	
				[3]
		(ii)	Name an element which has the same physical properties as these two oxides.	
				[41

Q# 13/ iGCSE Chemistry/2012/w/Paper 31/

7 Both strontium and sulfur have chlorides of the type XCl₂. The table below compares some of their properties.

	strontium chloride	sulfur chloride
appearance	white crystals	red liquid
formula	SrC1 ₂	SCl ₂
melting point/°C	874	-120
boiling point/°C	1250	59
conductivity of liquid	good	poor
solubility in water	dissolves to form a neutral solution	reacts to form a solution of pH1

a) (I)	25 °C.
	[2]
(ii)	Strontium is a metal and sulfur is a non-metal. Explain why both have chlorides of the type XCl_2 .
	The electron distribution of a strontium atom is 2 + 8 + 18 + 8 + 2.
	[2]
(iii)	Deduce the name of the acidic compound formed when sulfur chloride reacts with water.
	[1]
(iv)	Explain the difference in the electrical conductivity of liquid strontium chloride and
	liquid sulfur chloride.
	ro
	[3]

Q# 14/ iGCSE Chemistry/2012/s/Paper 31/

- Vanadium is a transition element. It has more than one oxidation state. The element and its compounds are often used as catalysts.
 - (a) Complete the electron distribution of vanadium by inserting one number.

2	+	8	+	 +	2	

[1]

Q# 15/ iGCSE Chemistry/2012/s/Paper 31/

(b) Lithium reacts with nitrogen to form the ionic compound, lithium nitride.

(iii) In all solid ionic compounds, the ions are held together in a lattice.

- (i) State the formula of the lithium ion. [1]
- (ii) Deduce the formula of the nitride ion. [1]
- Explain the term lattice.

(iv) What is the ratio of lithium ions to nitride ions in the lattice of lithium nitride? Give a reason for your answer.

 lithium	ions	:	nitride ions	

......[2]

Q# 16/ iGCSE Chemistry/2011/w/Paper 31/

This question is concerned with the following oxides.

sulfur dioxide carbon monoxide lithium oxide aluminium oxide nitrogen dioxide strontium oxide

[question continued on the next page]

(C)	LIU	nium oxide is an ionic compound.
	(i)	Identify another ionic oxide in the list on page 3.
		[1]
	(ii)	Draw a diagram which shows the formula of lithium oxide, the charges on the ions and the arrangement of the valency electrons around the negative ion. Use x to represent an electron from an atom of oxygen. Use o to represent an electron from an atom of lithium.
		[2]
c)	Both	SE Chemistry/2011/s/Paper 31/ Q3 iron and steel have typical metallic structures - a lattice of positive ions and a sea ectrons.
		Suggest an explanation for why they have high melting points.
		[2]
(Explain why, when a force is applied to a piece of steel, it does not break but just changes its shape.
		[2]

Q# 18/ iGCSE Chemistry/2011/s/Paper 31/ Q2

- (b) The electron distribution of a selenium atom is 2 + 8 + 18 + 6.
 - (i) Selenium forms an ionic compound with potassium. Draw a diagram which shows the formula of this ionic compound, the charges on the ions and the arrangement of the valency electrons around the negative ion.

Use o to represent an electron from an atom of potassium.

Use x to represent an electron from an atom of selenium.

_	_
ra	٦
114	
1.0	п
_	

[3]

_

- (ii) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound selenium chloride.
 - Use x to represent an electron from an atom of selenium.

Use o to represent an electron from an atom of chlorine.

(iii)	Predict two differences in the physical properties of these two compounds.					
	[2]				
Q# 19/ iG	CSE Chemistry/2010/w/Paper 31/ Q6					
(c) (i)	Give the formulae of lithium fluoride and nitrogen fluoride.					
	lithium fluoride					
	nitrogen fluoride[2	2]				

(ii)	ii) Predict two differences in their properties.									
(iii)	Explain why these two fluc									[2]
6 The	CSE Chemistry/2010/w/Paper 3 table below shows the eler	1/ ments in t	the se	cond p	eriod					
thei	r oxidation states in their mo	ost comm	ion co	mpour	ius.					
	element	Li	Be	В	С	N	О	F	Ne	
	number of outer electrons	1	2	3	4	5	6	7	8	
	oxidation state	+1	+2	+3	+4	-3	-2	-1	0	
Q# 21/ iG 4 Amı	Select two elements in the CSE Chemistry/2010/w/Paper 3: monia is an important indust	1/ trial chem	nical.							pe X ₂ . [1]
(a) (ii) Give the electron struction iii) Use this electronic struction formula of ammonia is	 icture, rat	ther th			cy of r	nitroge	n, to e	xplain	[1] why the

Q# 22/ iGCSE Chemistry/2010/w/Paper 31/

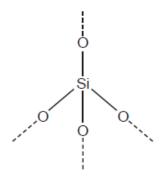
2	About 4 tin.	ut 4000 years ago the Bronze Age started in Britain. Bronze is an alloy of copper and			
	(a) (i)	Suggest a reason why a bronze axe was better than a copper axe.			
	(::\	Drace is another conner allow Name the other metal in brace			
	(ii)	Brass is another copper alloy. Name the other metal in brass. [1]			
	(b) The	e diagram below shows the arrangement of particles in a pure metal.			
	(i)	What is the name given to a regular arrangement of particles in a crystalline solid?			
		[1]			
	(ii)	Draw a diagram which shows the arrangement of particles in an alloy.			
	(iii)	[2] Explain the term <i>malleable</i> .			
	(111)	[1]			
	(iv)	Why are metals malleable?			

Q# 23/ iGCSE Chemistry/2010/w/Paper 31/

1 The table gives the composition of three particles.

particle	number of protons	number of electrons	number of neutrons
Α	15	15	16
В	15	18	16
С	15	15	17

(i)	Particle A is an atom.	
(ii)	They are all particles of the same element.	[1]
(iii)	Particle B is a negative ion.	[2]
(iv)	Particles A and C are isotopes.	
(b) (i)	What is the electronic structure of particle A ?	
(ii)	What is the valency of the element?	
(iii)	Is the element a metal or a non-metal? Give a reason for your choice.	
		[1]



Q# 24/ iGCSE Chemistry/2010/s/Paper 31/ Q5 (a)

iii)	Explain why graphite is a soft material.	
		[2

- (iv) Give one use of graphite.
- (b) Two of the oxides of these elements are carbon dioxide, ${\rm CO_2}$, and ${\rm silicon(IV)}$ oxide, ${\rm SiO_2}$.
 - (i) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound carbon dioxide. Use x to represent an electron from a carbon atom.
 - Use o to represent an electron from an oxygen atom.

(ii) A section of the macromolecular structure of silicon(IV) oxide is given below.

	Use this diagram to explain why the formula is SiO_2 not SiO_4 .	
(iii)	Predict two differences in the physical properties of these two oxides.	

[3]

Q# 25/ iGCSE Chemistry/2010/s/Paper 31/

Carbon and silicon are elements in Group IV. Both elements have macromolecular structures.(a) Diamond and graphite are two forms of the element carbon.

(i)	Explain why diamond is a very hard substance.		
		[2]	
(ii)	Give one use of diamond.		
		[1]	

Q# 26/ iGCSE Chemistry/2009/w/Paper 3/ Q4

- (c) It is now known that the smell of the seaside is due to the chemical dimethyl sulfide, (CH₃)₂S.
 - (i) Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.
 - Use x to represent an electron from a carbon atom.
 - Use o to represent an electron from a hydrogen atom.
 - Use to represent an electron from a sulfur atom.

Q# 27/ iGCSE Chemistry/2009/w/Paper 3/

- 5 The first three elements in Group IV are carbon, silicon and germanium. The elements and their compounds have similar properties.
 - (a) The compound, silicon carbide, has a macromolecular structure similar to that of diamond.

(1)	the construction of spacecraft. Suggest three of its physical properties.	
		[3]
ii)	Complete the following description of the structure of silicon carbide.	
	Each carbon atom is bonded to four atoms.	
	Each silicon atom is bonded to carbon atoms.	[2]

(b) Germanium(IV) oxide, GeO₂, has the same macromolecular structure as silicon(IV) oxide. Draw the structural formula of germanium(IV) oxide.

Q# 28/ iGCSE Chemistry/2009/s/Paper 31/

3 The following is a list of the electron distributions of atoms of unknown elements.

element	electron distribution
Α	2,5
В	2,8,4
С	2,8,8,2
D	2,8,18,8
Е	2,8,18,8,1
F	2,8,18,18,7

[3]

	(D)	Elei	nents C and F can form an ionic compound.	
		(i)	Draw a diagram that shows the formula of this compound, the charges on the ion and the arrangement of the valency electrons around the negative ion. Use o to represent an electron from an atom of C. Use x to represent an electron from an atom of F.	IS
			[3	3]
		(ii)	Predict two properties of this compound.	
			[2]
Q# 29	9/ iG0	CSE C	Chemistry/2008/w/Paper 31/ Q6	
(b)	ions		um and calcium are very reactive metals at the top of the series. Because tave different charges, K^+ and Ca^{2^+} , their compounds behave differently w	
	(i)	Ex	plain why the ions have different charges.	
				[2]
	-		Chemistry/2008/w/Paper 31/	
2	The	re a	re three types of giant structure – ionic, metallic and macromolecular.	
	(a)		lium nitride is an ionic compound. Draw a diagram that shows the formula of the	

- 2 The
 - (a) around the negative ion.

Use x to represent an electron from a sodium atom. Use o to represent an electron from a nitrogen atom.

(b)	(i)	Describe metallic bonding.	
			[3]
	(ii)	Use the above ideas to explain why	
		metals are good conductors of electricity,	
			[1]
		metals are malleable.	
			[2]
(c)	Sili	con(IV) oxide has a macromolecular structure.	
	(i)	Describe the structure of silicon(IV) oxide (a diagram is not acceptable).	
			[3]
	(ii)	Diamond has a similar structure and consequently similar properties. Give two physical properties common to both diamond and $silicon(IV)$ oxide.	
			[2]

Q# 31/ iGCSE Chemistry/2008/s/Paper 31/ Q5

(d) The structural formula of carbonyl chloride is given below.

Draw a diagram that shows the arrangement of the valency electrons in one molecule of this covalent compound.

Use x for an electron from a chlorine atom.

Use o for an electron from a carbon atom.

Use • for an electron from an oxygen atom.

[4]

Q# 32/ iGCSE Chemistry/2008/s/Paper 31/

2 (a) Complete the table which gives the names, symbols, relative masses and relative charges of the three subatomic particles.

name	symbol	relative mass	relative charge
electron	e		
proton		1	
	n		0

г	9	1	
1	3	П	
L	_		

(b)	Use	e the information in the table to explain the following.	
	(i)	Atoms contain charged particles but they are electrically neutral because the have no overall charge.	еу
			 [2]
			[2]
	(ii)	Atoms can form positive ions.	
			····
			[2]
	(iii)	Atoms of the same element can have different masses.	
			····
			[2]
	(iv)	Scientists are certain that there are no undiscovered elements missing from Periodic Table from hydrogen to lawrencium.	the
			[1]

Q# 33/ iGCSE Chemistry/2007/w/Paper 3/

- 3 Magnesium reacts with bromine to form magnesium bromide.
 - (a) Magnesium bromide is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and the arrangement of outer electrons around the negative ion.

The electron distribution of a bromine atom is 2, 8, 18, 7.

	(ii) E	xplain why the ra	atio of ions is 1:2.			
24/	iccs ch	emistry/2007/w/Pa	nor 2/			••••
-		••	•	neutrons and electrons in	atoms or ions.	
						,
p	particle	number of protons	number of electrons	number of neutrons	symbol or formula	
	Α	9	10	10	19 F -	
	В	11	11	12		
	С	18	18	22		
	D	15	18	16		
	Е	13	10	14		-
]

is

Q# 35/ iGCSE Chemistry/2007/s/Paper 3/

2 Complete the following table.

type of structure	particles present	electrical conductivity of solid	electrical conductivity of liquid	example
ionic	positive and negative ions	poor		
macro molecular	atoms of two different elements in a giant covalent structure	poor	poor	
metallic	and	good		copper

[Total: 6]

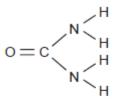
Q# 36/ iGCSE Chemistry/2007/s/Paper 3/

_											
4	Use v	our o	VGOC	of the	periodic	table	to help	vou	answer	these	auestions

(a) Predict the formula of each of the following compounds.

(i)	barium oxide		[1]					
(ii)	boron oxide		[1]					
(b) Giv	b) Give the formula of the following ions.							
(i)	sulphide		[1]					
(ii)	gallium		[1]					

(c) Draw a diagram showing the arrangement of the valency electrons in one molecule of


Use x to represent an electron from a nitrogen atom. Use o to represent an electron from a chlorine atom.

the covalent compound nitrogen trichloride.

Q# 37/ iGCSE Chemistry/2006/w/Paper 3/ Q5

(d) Give a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound urea. Its structural formula is given below.

Use o to represent an electron from a carbon atom.
Use x to represent an electron from a hydrogen atom.
Use • to represent an electron from a nitrogen atom.

•	_	•	

Q# 38/ iGCSE Chemistry/2006/w/Paper 3/6

(c) Two of the elements in chalcopyrite are the metal, copper, and the non-metal, sulphur. These have different properties. Copper is an excellent conductor of electricity and is malleable. Sulphur is a poor conductor and is not malleable, it is brittle. Explain, in terms of their structures, why this is so.

difference in electrical conductivity

[2]
difference in malleability

Q# 39/ iGCSE Chemistry/2006/w/Paper 3/

2 The table shows the melting points, boiling points and electrical properties of the six substances A to F.

substance	melting point / °C	boiling point / °C	electrical conductor at room temperature	electrical conductor of substance dissolved in water
Α	961	2193	good	does not dissolve
В	113	444	does not conduct	does not dissolve
С	0	100	very poor	very poor
D	803	1465	does not conduct	good
E	–5 to -10	102 to 105	good	good
F	-85	-60	does not conduct	does not dissolve

(i) Which three substances are solids at room temperature?

			[1]
	(ii)	Which one is an ionic compound?	
			[1]
	(iii)	Which one is a gas at room temperature?	
			[1]
	(iv)	Which two substances are liquids at room temperature?	
			[1]
	(v)	Which substance is a metal?	
	<u></u>		[1]
	(vi)	Which one is an impure substance?	
			[1]
Q# 40/	iGCSE Ch	nemistry/2006/s/Paper 3/ QiGCSE Chemistry/201 (b)	
	Use th	e Periodic Table to work out the number of protons and the number one in one atom of iron.	f
	numbe	r of protons = number of neutrons = [1]

•	1/ iGCSE Chemistry/2006/s/Paper 3/ Q6 Some radioactive isotopes are used as nuclear fuels.
(ii)	Give another use of radioactive isotopes.

(ii)	Giv	/e ar	nother use of radioactive isotopes.					
				[4]				
				[1]				
			Chemistry/2006/s/Paper 3/					
4	The	e first three elements in Group IV are carbon, silicon, germanium.						
	(a)		e element germanium has a diamond-type structure. Describe the structure manium. A diagram is acceptable.	of				
				[2]				
	(b)	Unl	ike diamond, graphite is soft and is a good conductor of electricity.					
		(i)	Explain why graphite has these properties.					
				[3]				
		(ii)	Give a use of graphite that depends on one of these properties.					
			property					
			use	[1]				
	(c)		bon dioxide and silicon(IV) oxide have similar formulae but different types octure.	of				
		(i)	Give the formulae of these oxides.					
		(ii)	How are their structures different?	[1]				
				[2]				

(d) All these elements form compounds with hydrogen called hydrides. The saturated hydrides of carbon are the alkanes. Predict the formula of the hydride of germanium which contains two germanium atoms.

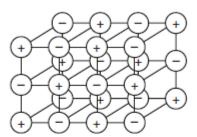
Q# 43/ iGCSE Chemistry/2005/w/Paper 3/

- 5 Strontium and zinc are both metals with a valency of 2. Strontium is more reactive than zinc. Its chemistry is similar to that of calcium.
 - (a) (i) Complete the following table that shows the number of protons, electrons and neutrons in each particle.

particle	protons	electrons	neutrons
⁸⁸ Sr			
⁹⁰ Sr			
⁶⁵ Zn ²⁺			

[3]

(ii) E	xplain	why	88Sr	and	90Sr	are	isoto	pes
--------	--------	-----	------	-----	------	-----	-------	-----


[1]

(iii) Complete the electron distribution of an atom of strontium.

2 + 8 + 18 + + [1]

Q# 44/ iGCSE Chemistry/2005/w/Paper 3/

1 (a) The structure of a typical ionic compound is a regular arrangement of positive and negative ions.

(i)	What is the	e name of	this regular	arrangement of	particles?
-----	-------------	-----------	--------------	----------------	------------

[1]

(ii) Give two physical properties of ionic compounds.

[2]

	ns are formed by electron loss or gain. The electron distribution of a magnesium om is 2 + 8 + 2 and of a nitrogen atom is 2 + 5.
(i	Give the formula of the magnesium ion.
	[1]
(ii	Give the formula of the nitride ion.
	[1]
(iii)	What is the formula of the ionic compound, magnesium nitride?
	[1]
(iv	In this compound there is an ionic bond. Why are the two ions attracted to each other?
\# 45/ igcse	[1] Chemistry/2005/s/Paper 3/ Q4(b)

(iii) Draw a diagram to show the arrangement of the valency electrons in one molecule of the covalent compound hydrogen sulphide.

Use o to represent an electron from a sulphur atom.

Use x to represent an electron from a hydrogen atom.

[2]

Q# 46/ iGCSE Chemistry/2004/w/Paper 3/

5 Strontium and sulphur chlorides both have a formula of the type XCl_2 but they have different properties.

property	strontium chloride	sulphur chloride	
appearance	white crystalline solid	red liquid	
melting point / °C	873	-80	
particles present	ions	molecules	
electrical conductivity of solid	poor	poor	
electrical conductivity of liquid	good	poor	

			formulae of the chlorides are similar because both elements have a valency of 2. ain why Group II and Group VI elements both have a valency of 2.
			ro1
	(b)	mol Use	w a diagram showing the arrangement of the valency electrons in one covalent ecule of sulphur chloride. Ex to represent an electron from a sulphur atom. Ex to represent an electron from a chlorine atom.
			[3]
(c)	Exp	lain	the difference in electrical conductivity between the following.
		(i)	solid and liquid strontium chloride
			[1]
		(ii)	liquid strontium chloride and liquid sulphur chloride
			[1]
			•

		SE Chemistry/2004/s/Paper 3/ QiGCSE Chemistry/201 con has the same type of macromolecular structure as diamond.	
	(i)	Explain why one atom of either element can form four covalent bonds.	
			[2]
	(ii)	Predict two physical properties of silicon.	
			[2]
	(iii)	Name a different element that has a similar structure and properties to silicon.	
(c)			[1]
(iii)) De	escribe the structure of silicon(IV) oxide. You may use a diagram.	
			[O.
			[2]
Q# 48	iGC	SE Chemistry/2004/s/Paper 3/ Q3	
(b)		w a diagram to show the arrangement of the valency electrons in one molecule ogen.	of

[2]

Q# 49/ iGCSE Chemistry/2004/s/Paper 3/

5	(a) Copper has the structure of a typical metal. It has a lattice of positive ions and a of mobile electrons. The lattice can accommodate ions of a different metal.			ea"
		Give a different use of copper that depends on each of the following.		
		(i)	the ability of the ions in the lattice to move past each other	
				[1]
		(ii)	the presence of mobile electrons	
				[1]
		(iii)	the ability to accommodate ions of a different metal in the lattice	
				[1]
O# 5	0/ iG(CSE C	Chemistry/2003/w/Paper 3/ QiGCSE Chemistry/201	

- (e) Another compound that contains nitrogen and hydrogen is hydrazine, N2H4.
 - (i) Draw the structural formula of hydrazine. Hydrogen can form only one bond per atom but nitrogen can form three.

(ii) Draw a diagram that shows the arrangement of the valency electrons in one molecule of hydrazine. Hydrazine is a covalent compound. Use x to represent an electron from a nitrogen atom. Use o to represent an electron from a hydrogen atom.

Q# 51/ iGCSE Chemistry/2003/w/Paper 3/ Q2 (b)

(ii) Describe the structure of a typical metal, such as zinc, and explain why it is malleable.

[3]

Q# 52/ iGCSE Chemistry/2003/s/Paper 3/ Q5

(e) Describe, by means of a simple diagram, the lattice structure of an ionic compound, such as caesium chloride.

[2]

Q# 53/ iGCSE Chemistry/2003/s/Paper 3/

- 5 The first three elements in Period 6 of the Periodic Table of the Elements are caesium, barium and lanthanum.
 - (d) Barium chloride is an ionic compound. Draw a diagram that shows the formula of the compound, the charges on the ions and gives the arrangement of the valency electrons around the negative ion.

The electron distribution of a barium atom is 2.8.18.18.8.2

Use x to represent an electron from a barium atom.

Use o to represent an electron from a chlorine atom.

[2]

2 Calcium and other minerals are essential for healthy teeth and bones. Tablets can be taken to provide these minerals.

Healthy Bones

Each tablet contains

calcium

magnesium

zinc

copper

boron

(a)	Bor	oron is a non-metal with a macromolecular structure.		
	(i)	What is the valency of boron?		
	(ii)	Predict two physical properties of boron.		
	(iii)	Name another element and a compound that have macromolecular structures.		
		element		
		compound		

(iv) Sketch the structure of one of the above macromolecular substances.

Q# 55/ iGCSE Chemistry/2002/w/Paper 3/ Q3

(e) Draw a diagram that shows the arrangement of the valency electrons in the ionic compound sodium phosphide.

Use o to represent an electron from sodium.
Use x to represent an electron from phosphorus.

[3]

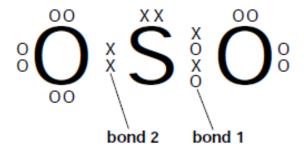
Q# 56/ iGCSE Chemistry/2002/w/Paper 3/ Q2 (a)

(ii) Complete the electron distribution of manganese by inserting one number.

Q# 57/ iGCSE Chemistry/2002/s/Paper 3/

- 4 Bromine is one of the halogens in Group VII.
- (c) Bromine reacts with phosphorus to form phosphorus tribromide. Draw a diagram showing the arrangement of the valency electrons in one molecule of this covalent compound. The electron distribution of bromine is:

$$2 + 8 + 18 + 7$$
.


Use x to represent an electron from phosphorus. Use o to represent an electron from bromine.

[3]

Q# 58/ iGCSE Chemistry/2001/w/Paper 3/ Q5

- (b) The diagram shows a possible arrangement of the valency electrons in a molecule of sulphur dioxide.
 - O represents an electron from an oxygen atom
 - X represents an electron from a sulphur atom

(i)	What type of covalent bond is labelled bond 1?
	[1]
(ii)	What is unusual about the covalent bond labelled bond 2?
	[1]

(c) Sulphur reacts violently with magnesium to form the ionic compound magnesium sulphide. Draw a diagram that shows the arrangement of the valency electrons in this compound.

Use O to represent an electron from a magnesium atom.
Use X to represent an electron from a sulphur atom.

[3]

Mark Scheme

Q# 2/ iGCSE Chemistry/2015/w/Paper 31/

Question	Answer				
6(a)(i)	any three from: each oxygen is joined to two silicons/atoms; each silicon is joined to four oxygens/atoms; eterahedral (around silicon)/similar to diamond; linear around oxygen;	3			
6(a)(ii)	any three from: • high melting point/boiling point; • hard; • strong; • (colourless) crystalline (solid); • brittle/not malleable; • poor/non-conductor (of electricity)/insulator; • insoluble (in water);	3			
6(a)(iii)	SiO ₂ reacts with or dissolves in or neutralises an acid or acidic oxide; SiO ₂ does not react or dissolve in or neutralise an alkali or base or basic oxide;	1			
6(b)	carbon dioxide has a simple molecular structure;	1			

Q# 3/ iGCSE Chemistry/2015/w/Paper 31/

Question	Answer	Marks			
1(a)(i)	Na*/sodium and O2-/oxide;	1			
1(a)(ii)	Ca ²⁺ /calcium;	1			
1(a)(iii)	P/phosphorus;	1			
1(a)(iv)	Si/silicon;	1			
1(b)(i)	 number of protons = 29; number of neutrons = 35; number of electrons = 27; three correct = [2]; two correct = [1]	2			
1(b)(iii)	number of nucleons = 45; number of charged particles = 42;				
1(c)(i)	have same proton number/same element/same atomic number; different number of neutrons/nucleons/mass number;				
1(c)(ii)	magnesium/Mg;	1			
1(c)(iii)	any two from: • treating cancer or radiotherapy; • biological tracer; • thickness (of paper or foil); • (checking for) leaks/cracks (in pipes); • (carbon) dating; • (generating) energy/electricity; • smoke detectors; • fill levels in packages; • sterilising surgical instruments;	2			

Q# 4/ iGCSE Chemistry/2014/w/Paper 31/ 2 (a) soft because weak forces between layers/sheets/rows [1] layers can slip/slide [1] good conductor because electrons can move/mobile [1] (b) it is soft: pencils or lubricant or polish [1] good conductor: electrodes or brushes (in electric motors) [1] (c) (i) every silicon atom is bonded/attached to 4 oxygen atoms or every oxygen bonded/attached to two silicon atoms [1] (ii) Any two from: high melting point/boiling point colourless crystals/shiny poor/non-conductor of electricity/insulator insoluble in water [2] **Q# 5/** iGCSE Chemistry/2014/w/Paper 31/ 7 (a) (i) $6Li + N_2 = 2Li_3N$ species (1) balancing (1) (ii) N3- ion drawn correctly [1] Charges correct (minimum 1 × Li ion and 1 nitride ion) [1] (b) (i) 3 × shared pairs between N and 3 × F [1] only 2 non-bonding electrons on N, 6 non-bonding electrons on each F (COND on first point) [1] (ii) Strong attractive forces/strong ionic bonds in lithium nitride [1] weak (attractive) forces between molecules in NF₃ [1] Q# 6/ iGCSE Chemistry/2014/s/Paper 31/ 1 (a) A, D, E (1) same number of protons and electrons/electrically neutral (1) [2] (b) C (1) more electrons than protons/36e⁻ and 34p⁺/it has gained electrons (1) [2] (c) B, F (1) [1]

[2]

(d) they have same number of protons (1)

different number of neutrons/neutron number (1)

Q# /	/ IG(_SE (Lnemistry/2013/w/Paper 31/			
6	(a)	(i)	(attractive force between) positive ions and (negative) electrons opposite charges attract ONLY [1]			[1 [1
			electrostatic attraction ONLY [1]			
		(ii)	lattice / rows / layers of lead ions / cations / positive ions NOT: atoms / protons / nuclei can slide past each other / the bonds are non-directional			[1 [1
O# 9	. / : c /	~C.E. /	·			١.
			Chemistry/2013/s/Paper 31/ Q6 gen atoms 1 bonding pair each	[1]		
(4)	2 n	itrog	en atoms with 1 bonding pair between them n-bonding pair on each N (need not be seen as a pair)	[1] [1]		
Q # 9	/ iG(CSE (Chemistry/2013/s/Paper 31/			
8	(a)	(i)	regular arrangement / repeating pattern NOT structure cond: ions not molecules / atoms		[1] [1]	
		(ii)	attraction between opposite charges / electrostatic attraction		[1]	
	(b)		ocalised / mobile / free / sea of electrons		[1]	
			sitive ions / cations t atoms / protons / nuclei		[1]	
			raction between these electrons and ions		[1]	
	(c)		int covalent			
			ions delocalised / free / mobile / sea of electrons or all electrons		[1] [1]	
			nic onic solid ions cannot move uid ionic compound ions can move		[1] [1]	
			etallic oth solid and liquid) metals have delocalised (or alternative term) electrons		[1]	
Q# 1	. 0/ i0	CSE	Chemistry/2012/w/Paper 31/ Q5			
(c)	4 e	bet	hlorine 1 bp and 3 nbps; ween carbon atom and oxygen atom; on oxygen atom;		[1] [1] [1]	j
Q# 1	. 1/ i	CSE	Chemistry/2012/w/Paper 31/ Q22			
(b) (same Z / same number of protons; accept: atoms of the same element			[1]
			different number of neutrons / different nucleon number / different mass number;			[1]
	(i	ii)	53 protons and 53 electrons;			[1]
			78 neutrons;			[1]
	(ii	i)	xenon;			[1]

Q#	12/ iG	CSE	Chemistry/2012/w/Paper 31/	
4	(a)	giant covalent; or: polymer made from monomers;		
	(b)	(i)	any three from: high mp / bp; hard; brittle;	
			insoluble (in water); poor conductor of electricity / heat;	[3]
		(ii)	carbon / diamond / silicon / boron; not: graphite	[1]
Q # :	13/ iG	GCSE	Chemistry/2012/w/Paper 31/	
7	(a)	(i)	melting point is below 25°C; boiling point above 25°C; accept: argument based on actual values note: 25°C is between mp and bp = [2]	[1] [1]
		(ii)	strontium loses 2e; sulfur gains 2e;	[1] [1]
		(iii)	hydrogen chloride / hydrochloric acid; accept: sulfurous acid or sulfur dioxide	[1]
		(iv)	molten strontium chloride has ions/ionic compound; which can move; sulfur chloride has no ions / only molecules / molecular / covalent;	[1] [1] [1]
Q # :	14/ iG	CSE	Chemistry/2012/s/Paper 31/	
	4 (a) 2	+ 8 + 11 + 2	[1]
Q # :	15/ iG	CSE	Chemistry/2012/s/Paper 31/	
(b)	(i)	Li ⁺		[1]
	(ii)	N ³⁻	-	[1]
	(iii)	~	jular arrangement of ions / particles / positive and negative ions alternate; t: atoms	[1]
	(iv)		; to to balance charges / reason in terms of valency;	[1] [1]
			Chemistry/2011/w/Paper 31/ try/201	
((c) (i	•	trontium oxide ccept: aluminium oxide	[1]
	(ii		se correct formula ond: charges on ions	[1]
		6	x and 2o around oxygen	[1]

(c)	(i)	strong attractive forces / strong bonds / bonds hard to break / requires a lot of energy to break bonds not between ions, not between positive and negative ions, not between electrons	[1]
		between positive ions and (negative) electrons / opposite charges attract	[1]
	(ii)	because the <u>layers</u> , <u>lattice or rows</u> of <u>ions/cations</u> accept sheets of ions not atoms / molecules / protons / nuclei	[1]
		can move / slip / slide past each other	[1]
Q# 18,	/ iGC	SE Chemistry/2011/s/Paper 31/ Q2	
(b) (i)	correct formula	[1]
		cond following marks conditional on correct formula If covalent mark 1 only correct charges 6x and 2o around anion do NOT penalise for incorrect coding ignore electrons around potassium	[1] [1]
	(ii)	correct formula	[1]
		If ionic mark 1 only cond 2 bp and 2 nbp around selenium 1 bp and 3 nbp around both chlorine atoms	[1] [1]
	(iii)	the ionic compound higher melting point / boiling point / less volatile conducts when molten or aqueous, covalent compound does not is soluble in water, covalent is not / ionic insoluble in organic solvents, covalent so in organic solvents harder any two note there has to be comparison between the ionic compound and the cov compound	[2]
	•	not density	
Q# 19,		SE Chemistry/2010/w/Paper 31/ Q6	
(c)	(i)	LiF [1] NF ₃	
	(ii)	LiF has higher mp / bp LiF is a (crystalline) solid, NF ₃ is probably a gas / a liquid / LiF is less volatile as liquids only LiF conducts LiF is soluble in water, NF ₃ is not when both solids LiF is harder any two	I
	(iii)	LiF is an ionic compound [1]]
		NF ₃ is a covalent/molecular compound [1] for stating that one is jonic and the other covalent [1] without specifying which is which	

	ii)	any	Chemistry/2010/w/Paper 31/ Q6 (a) two from nitrogen, oxygen and fluorine ept symbols / molecular formulae	[1]
Q# 21 4			Chemistry/2010/w/Paper 31/ nitrogen 2+5	[1]
		.,	needs three electrons	[1]
		. ,	to complete energy level	[1]
Q# 22	/ iG	CSE (Chemistry/2010/w/Paper 31/	
2	(a)	(i)	harder / stronger / any sensible suggestion which relates to better properties for e.g. stays sharp longer / cuts better / more corrosion resistant	purpose [1]
		(ii)	zinc	[1]
	(b)	(i)	lattice	[1]
		(ii)	regular pattern of one type of atom with different atom interspersed	[1] [1]
			can show the difference – size, shading, label etc.	111
		(iii)	can change its shape by force / plastically deform / can be hammered into she bend etc.	ets / can [1]
		(iv)	particles / ions / atoms / layers cond can slide past each other	[1]
			or metallic bond is non-directional particles can move past each other	[1] [1] [1]
Q# 23	/ iG	CSE (Chemistry/2010/w/Paper 31/	
1	(a)	(i)	same number of protons and electrons	[1]
		(ii)	all have the same number of protons / same proton number / same atomic number	er [1]
	(more electrons than protons number of protons and electrons not equal ONLY [1]	[2]
	(same number of protons (and electrons) / same proton number / same atomic nur different number of neutrons / different mass number / nucleon number	mber[1] [1]
	(b)	(i)	2 + 8 + 5	[1]
		(ii)	3/5	[1]
	(non-metal because it accepts electrons / needs 3e to complete outer energy level / because it is in Group V or 5e in outer shell note need both non-metal and reason for [1]	[1]

[Total: 9]

Q# 24/ iGC	SE Chemistry/2010/s/Paper 31/ Q5 (a)	
(i	iii) layer structure / sheets	[1]
	molecules / ions in layers = [0] layers can slide (over each other)	[1]
((iv) lubricant / pencils / electrodes mark first use offered	[1]
(b)	(i) 4e between carbon and oxygens 2 non-bonding pairs on both oxygens cond correct coding – only scored if marks 1 and 2 awarded ignore O ₂ in atom	[1] [1] [1]
((ii) 4O around each Si 2Si around each O must refer to diagram not valencies or electron distributions	[1] [1]
·	iii) SiO ₂ has higher mp or bp SiO ₂ is a solid, CO ₂ is a gas (at rtp) (when both are solids) then SiO ₂ is harder has higher density SiO ₂ insoluble, CO ₂ soluble any two, comparison needed	[2]
-	SE Chemistry/2010/s/Paper 31/ (i) macromolecular / giant covalent / giant atomic	[1]
5 (a) (all atoms held in position / in tetrahedral structure / to four other carbon atoms / all strong bonds	[1]
	(ii) jewellery / drilling / cutting / engraving / cutting edges in scalpels mark first use offered	[1]
	correct structural skeleton COND 4bp around both carbon atoms 2bp and 2nbp around sulfur atom NOTE marks 2 and 3 can only be awarded if mark 1 has been scored	[1] [1] [1]
Q# 27/ iGC	SE Chemistry/2009/w/Paper 3/	
5 (a)	(i) strong hard light or low density high melting point or high fixed points Accept high strength to weight ratio for [2] it includes marks 1 and 3 any THREE	[3]
((ii) silicon	[1]
,	four	[1]
	diagram to include: each germanium atom bonded 4 oxygen atoms each oxygen to 2 germanium atoms looks or stated to be tetrahedral "tetrahedral" scores mark even if diagram does not look tetrahedral independent marking of three points	[1] [1]

2# 28/ i0	GCSE Chemistry/2009/s/Paper 31/ Q3					
(b) (i)	CF ₂ or CaI ₂ COND next two marks conditional on correct formula	[1]				
	C ²⁺ and F ⁻ or Ca ²⁺ and I ⁻	[1]				
	7× and 1o round F/I NOTE covalent = 0	[1]				
	Ignore electrons around Ca					
	accept arrow notation arrow from electron on calcium atom to iodine					
(ii)	high melting point or boiling point					
	conducts when molten or in solution soluble in water					
	brittle					
	correct chemical properties					
	hard Any TWO	[2]				
	NOT crystalline solid NOT does not conduct as a solid	[-]				
Q# 29/ i0	GCSE Chemistry/2008/w/Paper 31/ Q6					
(b) (i) potassium has one valency electron	[1]				
	or loses one electron					
	calcium has two valency electrons or loses two electrons	[1]				
Q# 30/ i0	GCSE Chemistry/2008/w/Paper 31/					
	3Na : 1N correct ratio	[1]				
	correct charges 8e around N	[1] [1]				
	oe around iv					
	if no symbols then must have correct key if covalent only mark 1					
	ignore electrons around sodium					
	if the response includes both a correct and an incorrect answer do not select correct one, mark = [0]					
	do not select correct one, mark – [o]					
(b)	(i) positive ions or cations	[1]				
	NOT atoms or cores or nuclei	[41				
	layers or lattice or regular pattem delocalised or free or mobile electrons or sea	[1] [1]				
	OR positive ions or cations	[1]				
	NOT atoms or cores or nuclei					
	attraction between ions and electrons delocalised or free or mobile electrons or sea	[1] [1]				
	the attraction/electrostatic bonding must be between ions and	ניו				
	delocalised electrons, between cations and anions does not score ACCEPT bond if qualified - electrostatic bond, etc.					
	if molecular or molecules then cannot score cation mark					
	(ii) delocalised/free/mobile electrons					
	or electrons can move	[1]				
	layers or ions or atoms or particles	[1]				
	NB more flexible than 2(b)(i) can slip or move past each other or bonding non-directional	[1]				
	Fare agent and a content and an addition	f.1				

(c)	(i)	18	rahedral i:40 bor i:2 Si	nded/surrounded	i, etc.		[1] [1] [1]
NOT molecules of oxygen, etc. NOT intermolecular forces ONLY tetrahedral can score for either of the above							
Despite what the question states, ACCEPT a clear accurate diagram which above three points.					m which shows the		
	(ii)	noi brit ins any	th mp or blourless (Non/poor cor ttle coluble y TWO		iny or translucent ricity)		[2]
							[Total: 14]
Q# 31/	'iGC	SE C	hemistry/2	2008/s/Paper 31/	Q5		
(d) 8e around both chlorine atoms 4e between carbon and oxygen atoms 8e around carbon atom 8e around oxygen if a bond contains a line with no electrons, no marks for atoms joined by that line ignore keying [1]							[1] [1] [1]
Q# 32/	'iGC	SE C	hemistry/2	2008/s/Paper 31/			
2 (a)				1/1840 or		1
		ele	ctron	e or e	1/2000 or 0 1/1837 or negligible	- <u>1</u>	
		pro	oton	p or p ⁺ or H ⁺	1	+ <u>1</u>	
		ne	utron	n	1	0 or neutral	
		eacl	h correct i	row (1)			[3]
 (b) (i) equal numbers of protons and electrons of positive and negative charges or charge cancel/balance or net charge = 0 						gative charges or charges [1]	
(ii) lose electron(s) more protons than electrons NOT more + than –							[1] [1]
	(i	•	same nui	•	trons or same number of ele sotopes [1] ONLY	ectrons	[1] [1]
	(i				each proton number a, for example no gaps	between z = 1	[1] and z = 103

Q# 33/ iGCSE Chemistry/2007/w/Paper 3/ (a) Correct ratio MgBr₂ or Mg 2Br [1] Accept anywhere in space IF formula suggests covalency then [1] only for MgBr₂ or Mg 2Br correct charges Mg2+ and Br-[1] Do not be concerned about location of minus sign 8e around bromine [1] NOTE do not require correct coding – just 7 and 1 coded differently NOTE ignore electrons around magnesium (b) (i) pattern or order or regular or repeat or alternate [1] [1] COND positive and negative ions or atoms or molecules or particles NOTE Accept a sketch that shows the above, that is particles arranged in a regular way, e.g. any ionic compound such as sodium chloride (ii) Any reason from the list: [1] charges must balance or based on valencies or group II and group VII or 2e in outer level and 7e in outer level or magnesium loses 2 electrons and bromine gains 1 electron (per atom) Q# 34/ iGCSE Chemistry/2007/w/Paper 3/ 2 (a) 23₁₁Na [1] 40₁₈Ar [1] ³¹₁₅P³⁻ [1] for charge and [1] for symbol etc. [2] $^{27}_{13}$ A l^{3+} [1] for charge and [1] for symbol etc. [2] ACCEPT +3 and -3 NOTE Only the above are to be awarded the mark (b) particle B or ²³₁₁Na or sodium [1] COND they have the same proton number or the same number of protons or the same atomic number [1] NOT the same number of electrons Accept same number of electrons and protons [Total: 8] Q# 35/ iGCSE Chemistry/2008/s/Paper 31/ 2 good [1] named example e.g. sodium chloride [1] ACCEPT correct formula silica or silicon(IV) oxide or sand or silicon oxide named polymer only TWO elements [1] electrons [1] and positive ions [1] [2]

[1]

good

Q# 36/ iGCSE Chemistry/2008/s/Paper 31/	
4 (a) (i) BaO	[1]
(ii) B ₂ O ₃	[1]
(b) (i) S ²⁻	[1]
(ii) Ga ³⁺	[1]
(c) NCl ₃ COND 8e (1bp and 3nbp) around each chlorine 8e (3bp and 1nbp) around nitrogen	[1] [1] [1]
Q# 37/ iGCSE Chemistry/2006/w/Paper 3/ Q5	
(d) Correct diagram for urea one error ONLY [2] two errors ONLY [1] three errors 0	[3]
Q# 38/ iGCSE Chemistry/2006/w/Paper 3/	
Copper has delocalised electrons In sulphur the electrons are localised or cannot move in the piece of sulphur the electrons.	[1] hur [1]
In copper there are layers of copper atoms/ions Which can slip In sulphur there are no layers	[1] [1]
Q# 39/ iGCSE Chemistry/2006/w/Paper 3/	
2 More than required number of answers – [0] (i) A, B, D (ii) D (iii) F (iv) C and E (v) A (vi) E	[1] [1] [1] [1] [1]
0# 40/:CCSE Chamistry/2006/s/Danar 2/ OiCCSE Chamistry/201/h)	[TOTAL = 6]
Q# 40/ iGCSE Chemistry/2006/s/Paper 3/ QiGCSE Chemistry/201 (b) (ii) 26p and 30n	[1]
Q# 41/ iGCSE Chemistry/2006/s/Paper 3/ Q6 (b)	
(ii) treatment of cancer, autoradiographs, tracer, sterilising food, surgical equipment, measuring thickness, checking welds	[1]

Q# 42/ iGCSE Chemistry/2006/s/Paper 3/ (a) 4 Ge atoms around 1 Ge [1] Looks tetrahedral or stated to be [1] (b) (i) Graphite has layers [1] COND that can move/slip or weak bonds between layers [1] Graphite has delocalised/free/mobile electrons [1] (ii) property and use [1] lubricant or pencils soft OR good conductor electrodes or in electric motors (c) (i) CO₂ and SiO₂ or XO₂ [1] (ii) CO2 molecular or simple molecules or simple covalent [1] SiO₂ macromolecular or giant covalent [1] (d) Ge₂H₆ [1] Q# 43/ iGCSE Chemistry/2005/w/Paper 3/ Question 5 38p 38e 50n (a)(i) [1] 52n [1] 38p 38e 30p 28e 35n [1] Same number of protons and different number of neutrons [1] (ii) (iii) 8+2 [1] O# 44/ Question 1 [1] lattice (a)(i) (ii) high melting point or high fixed points poor conductor as solid good conductor as liquid, accept either aqueous or molten hard soluble in water [2] Any TWO (b)(i) Mg²⁺ [1] N^{3-} (ii) [1] (iii) Mg_3N_2 [1] (iv) opposite charges [1] Do NOT accept "attract" it is in the question accept electrostatic attraction as a phrase

Q# 45/ iGCSE Chemistry/2005/s/Paper 3/ 4 (b)

(iii) 2H to 1S

COND 8e around sulphur atom

2e per hydrogen atom

THREE correct

TWO from above [1]

Ionic structure = [0]

[2]

Q# 46/ iGCSE Chemistry/2004/w/Paper 3/

5	(a)		Group II metals will lose 2e Group VI elements will gain 2e		[1 [1
	(b)		SC l ₂ COND 8e around both chlorine atoms 8e around sulphur with 2nbp and 2bp If x and o reversed ignore if this is the only error		[1 [1 [1
	(c)	(i)	lons cannot move in solid or can move in liquid		[1]
		(ii)	No ions in sulphur chloride or it is covalent or only mostrontium chloride has ions	olecules or only	[1]
Q# 47	/ iG	CSE C	nemistry/2004/s/Paper 3/ QiGCSE Chemistry/201		
(b)	•	(i)	both have four outer or valency electrons need to share four more or need four more to complete energy level NOT four bonds	[1] [1]	
		(ii)	hard brittle high melting or boiling point poor conductor of electricity or semi-conductor any TWO NOT insoluble in water, NOT tough NOT appearance	[2]	
		(iii)	germanium or carbon NOT graphite	[1]	
(c) (iii)		2 sili tetra	ygen atoms around 1 silicon atom icon atoms around 1 oxygen hedral or diagram that looks tetrahedral me wrong chemistry, such as ionic MAX	[1] [1] [1]	
Q# 48	/ iG		nemistry/2004/s/Paper 3/ Q3		
		6 el 2 el	ectrons in bond between two nitrogen atoms ectrons on each nitrogen ore any coding of electrons with dots or crosses	[1] [1]	
Q# 4 9	/ iG	CSE C	nemistry/2004/s/Paper 3/		
5.		(a)	Has to be three different uses.		
			any use that depends on malleability or ductility- jewellery, pipes, wires, sheets, roofing, ornaments NOT that it is malleable or ductile	[1]	
			electrical wires or cooking utensils or electrodes (good) conductor	[1]	
			making alloys or named alloy	[1]	

- (e) (i) correct structural formula

 H
 N
 H

 N
 H

 (ii) 8e around nitrogen
 2e around each hydrogen
 - H H H H H

Q# 51/ iGCSE Chemistry/2003/w/Paper 3/ Q2 (b)

- (ii) lattice or layers of (positive) ions delocalised or free or mobile electrons layers/atoms/particles can slip
- Q# 52/ iGCSE Chemistry/2003/s/Paper 3/ Q5
 - (e) alternating (positive and negative) [1] pattern [1]

[1]

[1]

[1]

[3]

Q# 53/ iGCSE Chemistry/2003/s/Paper 3/5

(d) correct formula 1Ba to 2Cl charges correct 8e around the anion All three points
Two points ONLY [1]

If covalent [0] out [2]
Q# 54/ iGCSE Chemistry/2003/s/Paper 3/

- (a) (i) 3 ignore any charges
 (ii) high melting or boiling point
 hard
 poor conductor of electricity or heat
 brittle
 Any TWO
 - NOT insoluble, dull, or malleable (iii) carbon, graphite diamond silicon, germanium
 - silicon (IV) oxide or silica or silicon dioxide or silicon oxide or sand or silicon carbide or named polymer (iv) four around one
 - cond looks tetrahedral or shows continuation
 For graphite layers [1] weak bonds between layers [1]
 Accept any macromolecule, no link with (iii)
 For polymer repeat unit [1] continuation [1]

Q# 55/ iGCSE Chemistry/2002/w/Paper 3/ Q3

(e) 3Na to 1P [1]

COND next two marks

correct charges [1]

8e around P [1]

If covalent then only one mark for 3Na to 1P

[2]

[1]

[2]

[1]

[1]

[1]

[1]

Q# 56/ 1G	13	4	[1]	
, ,	CSE Chemistry/2002/s/Paper 3/ Q4		[-]	
(c)	P and 3Br	[1]		
	COND upon first mark being awarded 3bp and inbp around phosphorus 8c around each bromine if charges then first mark only	[1] [1]		
Q# 58/ iG	CSE Chemistry/2001/w/Paper 3/ Q5			
(b) (i)	double			[1]
(ii)	both electrons from sulphur or equivalent			[1]
(c)	2+ on Mg 2- and 8e on sulphur 1Mg: 1S			[1] [1] [1]

84 **주** Stopto

Xenon

Radon

175 Lu

۲

Helium

0

20 Neon

A Argen

47.3 **5 A** ₹ ⊕ m d At At 35.5 C. 80 Promin Chemistry.com Polonium T T Se 3 **₽** O [®]⁄⁄⁄⁄ 14 Z 167 **Er**bium Sb offmon 209 Bismuth > 72 Carbon 72 g g ₽ **%** = £ **2** ≥ 207 **Pb** Lead Silcon A1 Auminiu S Ga Sellin ≡ = m 115 **L** Indium ₽ 52 ರ 112 Cadmiun **Zinc** The Periodic Table of the Elements 157 **Gd** Gadoliniur Copper DATA SHEET 195 Tatinum 152 Eu Pd Pd Group TO3 OS Osmium ₽ 2 - **エ** Remining ₹ **B** 22 SZ 184 **S** ₹ **₽** Cenum 232 b = proton (atomic) number ± 178 P 2 *58-71 Lanthanoid series 190-103 Actinoid series 137 Ba = CS Csesium Rb Lubidum ן ביי Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

© UCLES 2015 0620/31/O/N/15

