
Name: Class: Date:

ALvl Chem 7 EQ P5 22w to 02s Paper 5 Equilibria 109marks

These questions are from an A2 Exam Paper on AS material. Most AS students will not benefit from working on these questions until their A2 year. AS students aiming for an A* <u>might</u> get some value looking at these questions, but only if they have made substantial progress in AS, so at least a <u>"Winner" (50%) level or beyond for Papers 1, 2 and 3!</u>

As you start and work through this worksheet you can tick off your progress to show yourself how much you have done, and what you need to do next. The first task is just to read the first question and should take you less than 3 minutes to complete.

Paper 5 Topic 7	RANK:	P5	P5	P5	P5	P4	P5 ¹	P5	P5
Checklist Tick each	KAINK.	Noob	Novice	Bronze	Silver	Gold	Winner	Hero	Legend
task off as you go along	Marks	1 Q	1 Q	10% of	25% of	40% of	50% of	75% of	100% of
task off as you go along	Marks	Started	done	marks	marks	marks	marks	marks	marks
Topic (marks)	109		16	11	27	44	55	82	109
Time @150s/mark (minutes)	273		39	27	68	109	136	204	273

What the most thoughtful students will get out of their extensive studying will be a capacity to do meaningful brain-based work even under stressful conditions, which is a part of the self-mastery skillset that will continue to deliver value for the whole of their lives. Outstanding grades will also happen, but the most important outcome from skillful action in study is being better at any important tasks even if circumstances are do not feel ideal.

Learning how to manage oneself so we can more reliably get ambitious and successful outcomes out of our challenges in a productive and positive way is one aspect of life's most valuable pursuit summarised and inscribed on the Temple of Apollo at Delphi: "know thyself".

- 1. To complete these questions, as important as your answer, is checking your answer against the mark scheme.
- 2. For each question, or page, convert your mark score into a percentage. This will allow you to see (and feel) your progress as you get more experience and understanding with each topic.

www.SmashingScience.org Patrick Brannac Page 1 of 36

¹ **DO NOT** work on these higher levels of completion in your A2 year unless you have also achieved at least a "**Gold**" (40%) in the same topic in **Paper 4**, which is **MOST** of your **A2** grade.

3. If you find you get a higher percentage answering short answer questions than multiple choice questions that often means you are using the marking scheme correctly; your correct answer might not be fully complete. The marks easiest to miss rely on providing more details fully described.

Q# 42/ ALvl Chemistry/2020/s/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :o)

2 Nitrogen dioxide can be prepared by strongly heating anhydrous lead nitrate, Pb(NO₃)₂(s). The thermal decomposition occurs according to the equation shown.

$$2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$$

The nitrogen dioxide, NO₂, can be separated from the oxygen by cooling the gas mixture produced until the NO₂ condenses and the oxygen does not.

	melting point/K	boiling point/K
nitrogen dioxide	262	294
oxygen	54	90

(a) Draw a labelled diagram of the laboratory apparatus (assembled) that could be used to prepare **liquid** nitrogen dioxide from the thermal decomposition of anhydrous lead nitrate.

[2]

(b) At room temperature, nitrogen dioxide exists in equilibrium with dinitrogen tetroxide according to the equation shown.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

brown colourless

For this equilibrium, $K_p = p_{N_2O_4}/p_{NO_2}^2$.

 $p_{\rm N_2O_4}$ and $p_{\rm NO_2}$ are measured in kPa.

State the units of K_p .

A student plans to investigate the variation of K_{D} with temperature.

(c) (i) A sample of the mixture of nitrogen oxides is introduced into a gas syringe at 295 K and the gas syringe is sealed so that it is both airtight and watertight. The volume occupied by the mixture is measured at different temperatures. The K_p value is calculated at each temperature.

Name the apparatus you would use to heat the gas syringe at different temperatures between 295 K and 370 K so that a volume reading of the gas syringe could be easily taken.

.....[1]

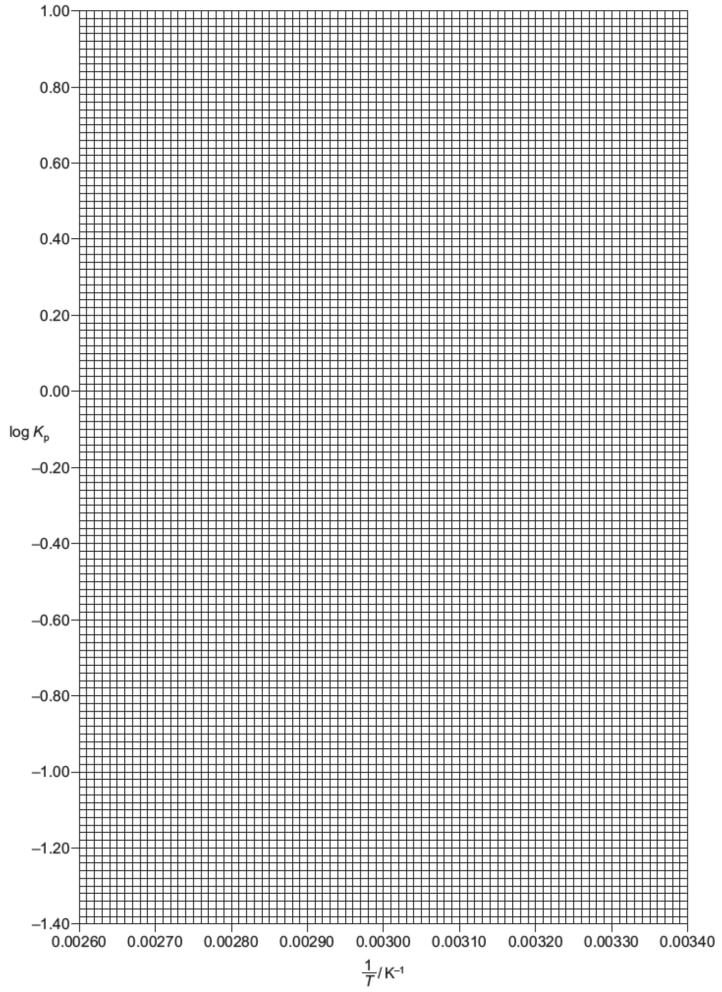
(ii) The results obtained are shown in the table.

Complete the table by calculating values for $\frac{1}{T}$ and $\log K_p$.

Record the value of $\frac{1}{T}$ to three significant figures.

Record the value of log K_{D} to two decimal places.

T/K	$\frac{1}{T}/K^{-1}$	K _p	log K _p
377		0.076	
361		0.122	
344		0.257	
330		0.741	
315		1.506	
312		3.490	
295		9.025	


[2]

(iii) Plot a graph on the grid of log K_p against $\frac{1}{T}$.

Draw a line of best fit through the plotted points.

[2]

d) (i)	State and explain what your graph shows about the accuracy of the experimental results.
	[1]
(ii)	Suggest a reason for your answer in (d)(i).
	[1]
(iii)	Suggest what the student could do to improve the accuracy of the experiment.
	[1]
e) (i)	Use the graph to determine the gradient of the line of best fit.
	State the coordinates of both points you used in your calculation. These must be on your line of best fit.
	Give your answer to three significant figures.
	coordinates 1 coordinates 2
	gradient = K

(ii)	The relationship between log K_p and $\frac{1}{T}$ is given by the equation shown.
	$\log K_p = (-\Delta H/2.303RT) + \text{constant}$
	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
	Use the gradient determined to calculate a value for ΔH .
	If you were unable to determine a value for the gradient, use the value 2800 K. This is not the correct value.
	$\Delta H = \dots kJ \text{mol}^{-1}$ [2]
(f) (i)	With reference to the results obtained in this experiment, state and explain how $K_{\rm p}$ varies with temperature.
	[2]
(ii)	With reference to (b) and the data for K_p in the table in (c)(ii) suggest how the colour of the equilibrium mixture at 370 K will differ, if at all, from the colour at room temperature. Explain your answer.
	difference in colour of mixture
	explanation
	[2]
	[2]

[Total: 19]

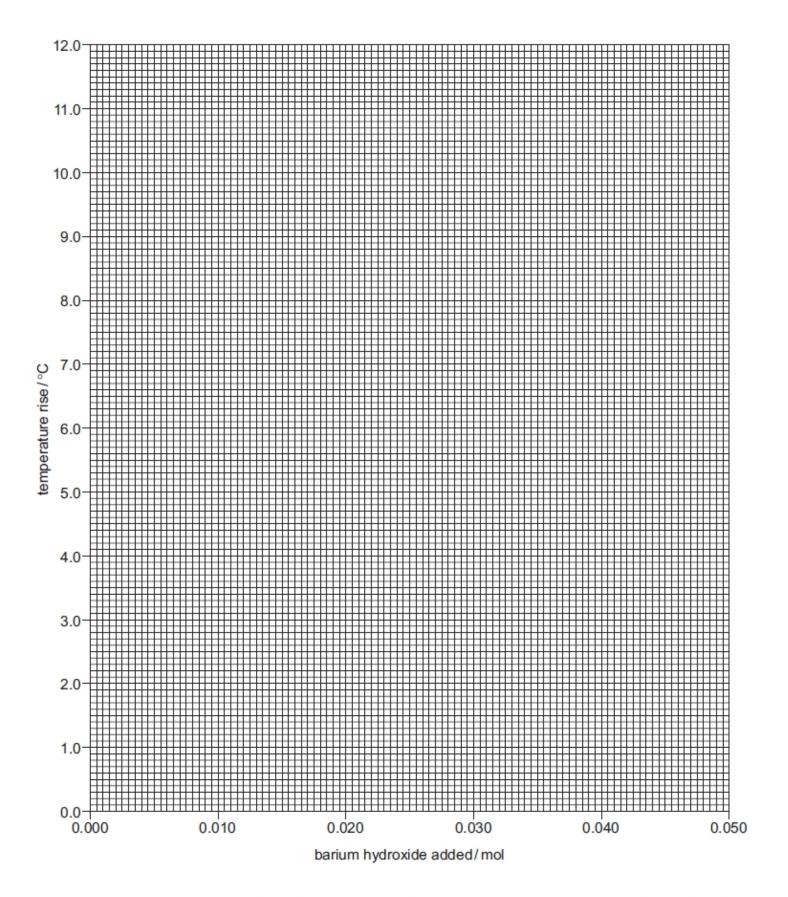
Q# 43/ ALvl Chemistry/2015/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :o)

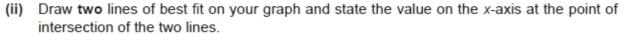
2 In an experiment, various masses of solid barium hydroxide are added to 60.0 cm³ of a solution of hydrochloric acid contained in a polystyrene cup.

In each experiment a fresh sample of the acid is taken and its initial temperature is measured. After the barium hydroxide has been added, the acid is stirred and the maximum temperature reached is noted.

The results of each experiment are recorded in the table below.

(a) Complete the table below to give the temperature rise obtained from each experiment to one decimal place and the amount of barium hydroxide used in mol to three significant figures in each case.


The mass of 1 mol of barium hydroxide is 171 g.


initial temperature of HC1/°C	mass of barium hydroxide added /g	maximum temperature reached/°C	temperature rise/°C	barium hydroxide added/mol
21.0	0.500	22.2	,	
20.6	1.00	23.0		
21.2	1.50	24.9		
21.8	2.00	26.5		
20.5	3.00	27.8		is
21.4	4.00	31.1		
21.2	5.00	31.6		
21.0	6.00	31.4		
20.8	8.00	31.2		

[2]

(b) (i) Using the grid on page 7, plot a graph to show how the temperature rise varies with the moles of barium hydroxide added.
[1]

		[2]
d)		plain the variation in temperature that takes place when barium hydroxide is added to the drochloric acid.
		[2]
e)	(i)	When the experiment is done in the way described, the results are not very accurate. Apart from limitations due to the accuracy of the measuring equipment, suggest why: all the temperature rises measured are less than theoretically should be expected,
		the temperature rises are more inaccurate as they approach their maximum value.
	(ii)	[2] What improvement would you make to achieve greater accuracy?

(c) Use the value on the x-axis at the point of intersection to calculate the concentration of the

hydrochloric acid in mol dm⁻³.

(f)	In another experiment, 60.0 cm ³ of ethanoic acid is used instead of the 60.0 cm ³ of hydrochloric acid.
	If the ethanoic acid has the same concentration as the hydrochloric acid, draw on your graph another pair of lines to show the results you would expect to obtain.
	Explain your answer.
	[3]
	[Total: 15]

Q# 44/ ALvl Chemistry/2015/s/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :o)

2 At high temperatures a mixture of iodine and hydrogen gases reacts to form an equilibrium with gaseous hydrogen iodide.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

(a) (i) Write an expression for the equilibrium constant, K_c, based on concentration, for this reaction.

[1]

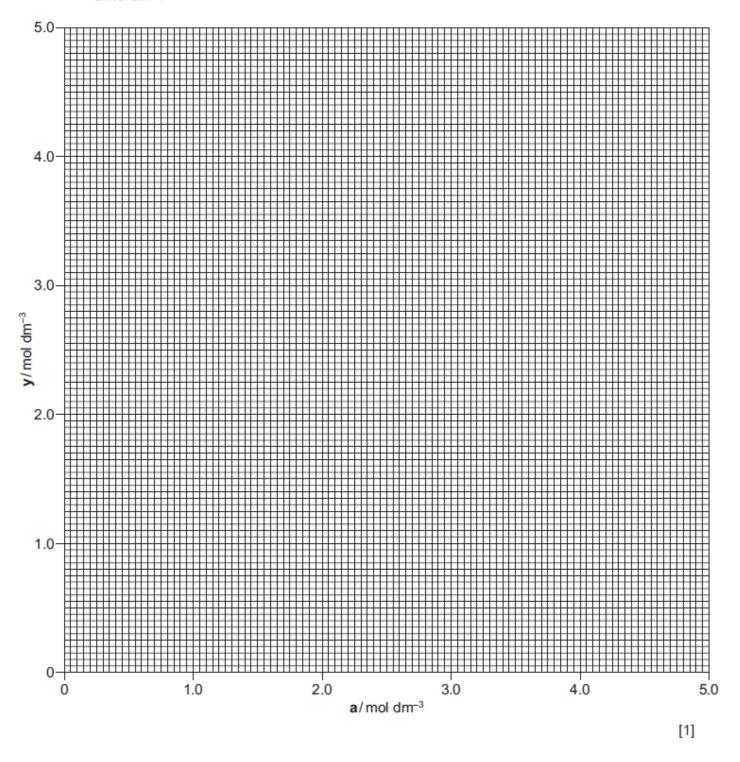
(ii) If the starting concentration of both iodine and hydrogen was a moldm⁻³ and it was found that 2y moldm⁻³ of hydrogen iodide had formed once equilibrium had been established, write K_c in terms of a and y.

[1]

(b) The expression for the equilibrium constant from (a)(ii) can be re-written as shown below.

$$y = \frac{a\sqrt{K_c}}{2 + \sqrt{K_c}}$$

In an experiment, air was removed from a $1\,\mathrm{dm^3}$ flask and amounts of hydrogen and iodine gases were mixed together such that their initial concentrations were both \mathbf{a} mol dm⁻³. This mixture was allowed to come to equilibrium at 760 K in the flask. The equilibrium concentration of iodine, $(\mathbf{a} - \mathbf{y})$ mol dm⁻³, was then measured.


The experiment was repeated for various initial concentrations, a moldm⁻³, and the results were recorded in the table below.

(i) Complete the table to give the values of y mol dm⁻³ to three decimal places.

a mol dm ⁻³	(a – y) mol dm ⁻³	y mol dm ⁻³
0.200	0.022	0.178
0.500	0.050	
0.800	0.252	
1.000	0.200	
1.500	0.365	
2.100	0.570	
2.800	0.652	
3.400	0.700	
3.800	0.867	
4.200	0.868	
4.900	1.150	

(ii) Plot a graph to show how y moldm⁻³ varies with initial concentrations of hydrogen and iodine, a moldm⁻³.

(iii) Use your points to draw a line of best fit.

[1]

c)	(i)	Determine the slope of your graph. State the co-ordinates of both points you used for y calculation. Record the value of the slope to three significant figures .	our
		co-ordinates of both points used	
		slope =	[2]
	(ii)	Use the value of your slope and the equation in (b) to calculate the value of $K_{\rm c}$. You working must be shown.	
			[2]
d)	Exp	plain why, for safety reasons, it is necessary to remove air from the 1 dm ³ flask.	
e)	On	e of the experiments in (b) was repeated in a 500 cm ³ flask instead of the 1 dm ³ flask.	
	Wh	at effect, if any, would this have on the rate of reaction and the value of K_c measured?	
			[2]

(f) The reaction of hydrogen and iodine to form hydrogen iodide is exothermic.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 $\Delta H = -9.6 \text{ kJ mol}^{-1}$

- (i) On your graph, draw and label the line you would expect if the experiment was performed at 1000 K instead of 760 K. [1]
- (ii) What effect, if any, would the higher temperature have on the value of K_c ?

[Total: 15]

Q# 45/ ALvl Chemistry/2015/s/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org	O# 45	ALvl Chemistry	v/2015/s/TZ 1	/ Paper 5/O# 1/www.SmashingScience.org	:0)
--	-------	----------------	---------------	--	-----

A saturated aqueous solution of magnesium methanoate, Mg(HCOO)₂, has a solubility of approximately 150 g dm⁻³ at room temperature. Its exact solubility can be determined by titrating magnesium methanoate against aqueous potassium manganate(VII).

During the titration, the methanoate ion, HCOO-, is oxidised to carbon dioxide while the manganate(VII) ion, MnO_4 -, is reduced to Mn^{2+} .

You are supplied with:
a saturated aqueous solution of Mg(HCOO) ₂
aqueous potassium manganate(VII), KMnO ₄ , of concentration 0.0200 mol dm ⁻³

a) (i)	Write the half equations for the oxidation of HCOO-(aq) to $\rm CO_2(g)$ and the reduction of $\rm MnO_4$ -(aq) to $\rm Mn^{2+}(aq)$ in acid solution.
	[2]
(ii)	Using the approximate solubility above, calculate the concentration, in mol dm ⁻³ , of the saturated aqueous magnesium methanoate and the concentration of the methanoate ions present in this solution. [A _r : H, 1.0; C, 12.0; O, 16.0; Mg, 24.3]
	[2]
(iii)	In order to obtain a reliable titre value, the saturated solution of magnesium methanoate needs to be diluted.
	Describe how you would accurately measure a 5.0 cm³ sample of saturated magnesium methanoate solution and use it to prepare a solution fifty times more dilute than the saturated solution.

(iv)	Before the titration is carried out, dilute sulfuric acid must be added to the magnesium methanoate.
	Explain why this is necessary and also whether the volume of sulfuric acid chosen will affect the result of the titration.
	[2]
(v)	The potassium manganate (VII) is added from a burette into the magnesium methanoate in a conical flask.
	Describe what you would see when you had reached the end-point of the titration.
	[1]
(vi)	1 mol of acidified MnO ₄ ⁻ ions reacts with 2.5 mol of HCOO ⁻ ions.
	25.0cm^3 of the diluted solution prepared in (iii) required 25.50cm^3 of 0.0200moldm^{-3} potassium manganate(VII) solution to reach the end-point.
	Use this information to calculate the concentration, in $\rm moldm^{-3},\ of\ HCOO^-$ ions in the diluted solution.
	mol dm ⁻³ [1]
(vii)	Use your answer to (vi) to calculate the concentration, in mol dm $^{-3}$, of the saturated solution of magnesium methanoate, $Mg(HCOO)_2$. Give your answer to three significant figures.

(b)	The solubility of magnesium methanoate can be determined at higher temperatures using the same titration.
	In an experiment to determine how the concentration of saturated magnesium methanoate varies with temperature, name the independent variable and the dependent variable.
	independent variable
	dependent variable
	[1]
(c)	The solubility of magnesium methanoate increases with temperature.
	What does this tell you about ΔH for the process below?
	$Mg(HCOO)_2(s) \iff Mg^{2+}(aq) + 2HCOO^{-}(aq)$
	Explain your answer.
	[2]
(d)	A student used the same titration method, this time to measure the concentration of a saturated solution of <i>barium</i> methanoate.
	Explain why the acidification of the solution with dilute sulfuric acid might make the titration difficult to do.
	[1]
	[Total: 15]

Q# 46/ ALvl Chemistry/2014/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :o)

- 2 The acid dissociation constant, K_a, of a weak monoprotic acid, HA, is to be determined from the measurement of the pH change that occurs when it is titrated with an aqueous solution of sodium hydroxide.
 - $2.70\,g$ of HA was dissolved in distilled water to make exactly $250.0\,cm^3$ of solution. $25.00\,cm^3$ of the solution was pipetted into a beaker.

The pH of the acid in the beaker was measured and recorded in the table below.

A burette was then filled with aqueous sodium hydroxide and the 25.00 cm³ of HA was titrated by adding volumes of the aqueous sodium hydroxide to the beaker as indicated in the table below. After each addition the pH was measured and the value recorded.

volume of sodium hydroxide added/cm³	pH measured
0.00	2.41
2.00	2.75
4.00	3.09
8.00	3.46
12.00	3.52
16.00	3.96
20.00	4.20
24.00	4.50
28.00	5.05
30.00	7.00
32.00	11.55
36.00	12.00

(a) Plot a graph to show how the pH of the mixture changes with the volume of added aqueous sodium hydroxide as shown in the table.

Draw a smooth curve, using the plotted points on your graph, to produce a titration curve for the addition of aqueous sodium hydroxide to the acid HA.

(b)	Circ	cle any points on the graph that are anomalous and suggest a reason why this might occur.
		[2]
(c)		at would be a suitable range of pH values in which an indicator would change colour to ntify the end point of this neutralisation?
		[1]
(d)		00 cm ³ of aqueous sodium hydroxide is required to neutralise 25.00 cm ³ of HA and the lation for the neutralisation is shown.
		NaOH + HA → NaA + H ₂ O
	(i)	Excluding water, state the three ions or molecules that will be present in the highest concentration when 15.00 cm³ of aqueous sodium hydroxide has been added to 25.00 cm³ of HA.
		[1]
	(ii)	State and explain how the concentrations of these ions or molecules compare.
		[2]
e)		your graph to determine the pH obtained when $15.00 \mathrm{cm^3}$ of aqueous sodium hydroxide is ed to $25.00 \mathrm{cm^3}$ of HA. Use this pH to determine the value of K_{a} for HA.

f)	(i)	of HA in mol dm ⁻³ .
		[2
	(ii)	Calculate the initial concentration of HA, in g dm ⁻³ , and use this together with your answer to (f)(i) to calculate the relative molecular mass, M_r , of HA. (Remember that 2.70 g of HA was dissolved in distilled water to make exactly 250.0 cm ³ of solution.)
		Solution.y
		[1
(g)		en if the experiment is done very carefully with very accurate apparatus, the answer obtained the molecular mass of HA is likely to be subject to error. Suggest why.
		[1]
		[Total: 15]

EXPERIMENT Required, no longer needed from 2007 onwards.

1 FB 1 is a solution of sulphuric acid.

FB 2 is 2.00 mol dm⁻³ sodium hydroxide, NaOH.

Determining the concentration of sulphuric acid by thermometric titration.

Record the temperature of each solution, taking care to wash and dry the thermometer before measuring the temperature of the second solution. Read the temperature to the nearest 0.5 °C, and record the temperature of each solution in Table 1.1. Calculate the average temperature of the two solutions.

Table 1.1

	/ °C
temperature of solution FB 1	
temperature of solution FB 2	
average temperature	

[2]

Support the plastic cup in a 250 cm³ beaker. Use one of the measuring cylinders to transfer 40 cm³ of **FB 2**, sodium hydroxide solution, into the plastic cup.

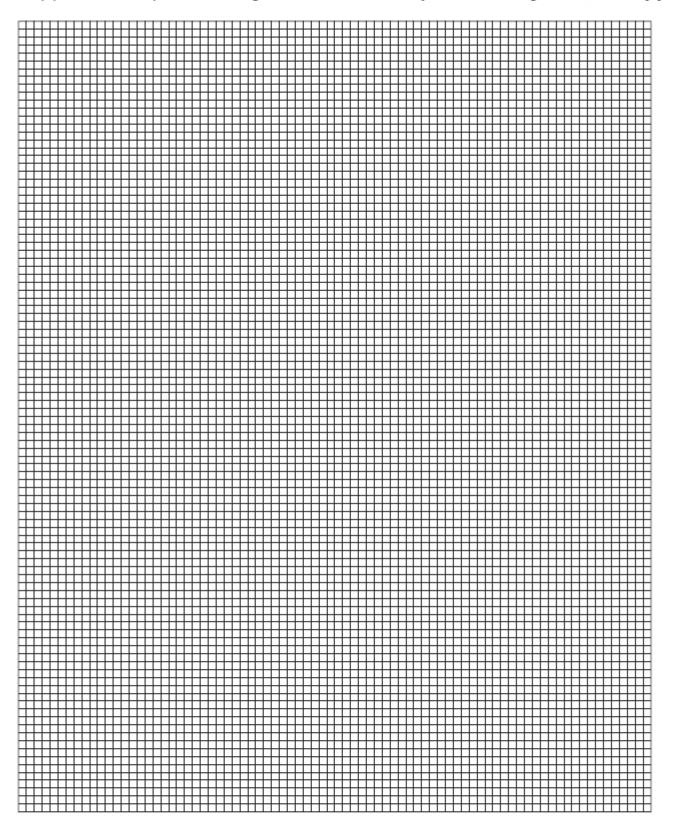
Replace the stopper or cover over **FB 2** to prevent any reaction of carbon dioxide in the air with the sodium hydroxide.

Using the second measuring cylinder transfer 10 cm³ of **FB 1**, sulphuric acid, into the sodium hydroxide in the plastic cup. Stir the mixture with the thermometer and note the highest temperature obtained.

This temperature should be recorded in Table 1.2 for experiment 1.

Empty, rinse and dry the plastic cup. Repeat the experiment with the other mixtures shown in Table 1.2 and record the highest temperature reached in each mixture.

Table 1.2


								_
	experiment	1	2	3	4	5	6	
	volume of FB 2 / cm ³	40	35	30	25	20	15	
*	volume of FB 1 / cm ³	10	15	20	25	30	35	*
	maximum temperature / °C							

For each experiment use the average initial temperature from Table 1.1 to calculate and record the temperature rise after mixing the solutions.

	experiment	1	2	3	4	5	6	
*	moles of sodium hydroxide	0.08	0.07	0.06	0.05	0.04	0.03	*
	temperature rise / °C							

[4]

- (b) Draw two appropriate straight lines through your plotted points to show an end-point for the neutralisation. [1]
- (c) Deduce from your graph, the number of moles of sodium hydroxide that reacted at the end-point.

(d)	Use your answer to (c) and data from the lines in Table 1.2 marked with asterisks (*) to
	calculate the volume of sulphuric acid, FB 1, reacting at the end-point.

[1]

(e) Calculate how many moles of sulphuric acid reacted with the sodium hydroxide at the end-point.

$$2NaOH(aq) + H2SO4(aq) \rightarrow Na2SO4(aq) + 2H2O(I)$$

[1]

(f) Calculate, in mol dm⁻³, the concentration of the sulphuric acid in FB 1.

[1]

Determining the enthalpy change for the reaction H⁺(aq) + NaOH(s) → H₂O(I) + Na⁺(aq)

Empty, rinse and dry the plastic cup used in the first part of the question. Using a measuring cylinder transfer 50 cm³ of **FB 1** into the cup. When the temperature is steady, record its value in Table 1.3.

Weigh the tube labelled **FB 3** which contains solid sodium hydroxide. Record the mass in Table 1.3. Tip the contents of the tube into the plastic cup, stir, and record the highest temperature achieved in Table 1.3.

Weigh the empty tube and record its mass in Table 1.3.

Table 1.3

initial temperature of FB 1 / °C	
maximum temperature after mixing FB 1 and FB 3 / °C	
mass of tube + FB 3 / g	
mass of empty tube / g	

Complete the table by calculating the temperature rise and mass of FB 3 added.

temperature rise / °C	
mass of FB 3 added / g	

Calculate the heat energy released during the reaction of FB 1 and FB 3 in the cup. [Assume that 4.3 J are required to raise the temperature of 1 cm ³ of solution by 1 °C.]
operay released
energy released[1]
Use data from Table 1.3 and your answer to (f) to calculate which of sodium hydroxide or sulphuric acid is in excess.
If you are unable to obtain a value in (f) use 1.50 mol dm ⁻³ as the concentration of the sulphuric acid.
$2NaOH(s) + H2SO4(aq) \rightarrow Na2SO4(aq) + 2H2O(I)$
[A _r : Na, 23.0; O, 16.0; H, 1.0]
is in excess. [1] Calculate the enthalpy change, ΔH , for the following reaction. $H^+(aq) \ + \ NaOH(s) \ \rightarrow \ H_2O(I) + Na^+(aq)$
$\Delta H = \frac{\text{kJ mol}^{-1}}{[1]}$ [Total: 20]

Q# 48/ ALvI Chemistry/2005/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :0) **EXPERIMENT Required, no longer needed from 2007 onwards.**

2 ASSESSMENT OF PLANNING SKILLS

You are provided with solutions FB 3, FB 4 and FB 5.

The solutions are:

- 1.0 mol dm⁻³ sodium hydroxide
- 1.0 mol dm⁻³ sulphuric acid
- 0.5 mol dm-3 sulphuric acid

You are to plan experiments that will enable you to identify the solution that matches each of FB 3, FB 4 and FB 5.

You have available the following apparatus:

-10 °C to 110 °C thermometer,

100 cm³ beaker,

the measuring cylinder from question 1.

The measuring cylinder should be rinsed thoroughly before each use.

(a) You are to identify, by the minimum number of practical steps, which of the solutions contains sodium hydroxide.

Your experiment(s) must use only the solutions and apparatus above.

Outline your method – with an explanation of the expected results.
[2]
Carry out your plan.
Results

[2]

b)	Plan and carry out further experiments to find which of the remaining solution 1 mol dm ⁻³ sulphuric acid and which is 0.5 mol dm ⁻³ sulphuric acid.	s is
	Outline your method – with an explanation of the expected results.	
		. [2]
	Carry out your plan and present your results in a suitable table.	
	Carry out your plan and present your results in a suitable table. Results	
		[2]
	Results	[3]
	Results Identity of the solutions	[3]
	Results Identity of the solutions FB 3 contains	[3]
	Results Identity of the solutions	[3]

[Total: 10]

Mark Scheme ALvl Chem 7 EQ P5 22w to 02s Paper 5 Equilibria 109marks

Q# 42/ ALvl Chemistry/2020/s/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :0)

2(a)	M1 Heating a tube containing lead nitrate. Labels: Lead nitrate AND Heat A Bunsen for heat M2 Use of iced water for cooling an unsealed collection vessel Labels: Iced water						
2(b)	A Cold wa	itei				1	
2(c)(i)		atically contro	lled water bath			1	
						2	
2(c)(ii)	T/K	1/T/K ⁻¹	Кр	Loq ₁₀ Kp			
	377	0.00265	0.076	-1.12			
	361	0.00277	0.122	-0.91			
	344	0.00291	0.257	-0.59			
	330	0.00303	0.741	-0.13			
	315	0.00317	1.506	0.18			
	312	0.00320	3.490	0.54			
	295	0.00339	9.025	0.96			
	M1 Column						
2(c)(iii)	M1 7 point	ts plotted corr	ectly			1	
	M2 Line of	f best fit draw	n			1	
2(d)(i)	Not accura	ate as there is	a lot of scatter	about the line	of best fit	1	
2(d)(ii)	Temperatu	ure of each ex	periment is dif	ficult to record	accurately	1	
2(d)(iii)	Repeat an	d take an ave	erage			1	
2(e)(i)	M1 Co-ord	linates read a	nd recorded co	orrectly		1	
	M2 Gradient calculated to 3 SF						
2(e)(ii)	M1 Rearrangement to show –ΔH/2.303R = Gradient						
	M2 Gradient x 2.303 x 8.31 correctly calculated						
2(f)(i)	M1 Kp is inversely proportional to temperature						
	M2 Becau	se ΔH has a	negative value.			1	
2(f)(ii)	M1 Darker	r brown				1	
	M2 Equilib	rium shifts to	left hand side	(at higher tem	peratures).	1	

2 (a)		Temperature rise/°C	barium hydroxide added/ mol				
		1.2	0.00292				
		2.4	0.00585				
		3.7	0.00877				
		4.7	0.0117				
		7.3	0.0175				
		9.7	0.0234				
		10.4	0.0292				
		10.4	0.0351				
		10.4	0.0468				
	Values in temperature column correct and to 1 decimal place Values in barium hydroxide column are correct and to 3 sig figs						
(b)	(i)	All points plotted correctly					
	(ii)	Two best-fit straight lines drawn and levelling to a horizontal line	then		[1]		
		The value on the x-axis is read corre	ectly		[1]		
(c)		The concentration of the acid is calc (2 × mol of Ba(OH) ₂) × 1000/60	culated as:		[2]		
(d)		Exothermic reaction		-	[1]		
		After hydrochloric acid is neutralised hydroxide is in excess the temperate			[1]		
(e)	(i)	Loss of heat (to the surroundings)			[1]		
		Greater temperature gradient OR the heat loss is greater	e reaction is	slower OR (rate of)	[1]		
	(ii) Give polystyrene cup a lid or cover/use a finer powder						

(f)	Line rises less steeply and intersects second line at a lower temperature rise	[1]
	Maximum is reached at the same mol of barium hydroxide as the experiment with hydrochloric acid	[1]
	Some of the heat that would have been released is used to ionise the ethanoic acid	[1]
Qn2		[Total: 15]

(b)	P1/P2	(Independen	Independent) Temperature				F41
		(Dependent)	Concentration of m	agnesium methanoate			[1]
(c)	P3	ΔH is positive	Э				[1]
	P3	(An increase direction of the	in temperature) wil he endothermic cha	I favour / promote / incr inge / reaction	rease / a movemo	ent in the	[1]
(d) P3 Precipitate is formed / barium sulfate is insoluble / insoluble product				ı	[1]		
							[15]
2 (a) (i)	D1		[HI] ²				[1]
			$K_0 = \frac{1}{[H_2][I_2]}$				
(ii)	D1	K	4y²				[1]
			(a – y) ²				
(b) (i)	D3		a mol dm ⁻³	a – y mol dm ⁻³	y mol dm ⁻³		
			0.200	0.022	0.178		
			0.500	0.050	0.450		
			0.800	0.252	0.548		
			1.000	0.200	0.800		
			1.500	0.365	1.135		
			2.100	0.570	1.530		
			2.800	0.652	2.148		
			3.400	0.700	2.700		
			3.800	0.867	2.933		
			4.200	0.868	3.332		
			4.900	1.150	3.750		[1]
		All re	esults for y are to 3 alues for y are come	decimal places			[1]
(ii)	D1	All points plot	All points plotted correctly				[1]
(iii)	E5	Appropriate s	ppropriate straight line drawn through the origin				[1]

(c) (i)	D3/C1	Co-ordinates read correctly from the line	[1]
		Slope of the graph calculated correctly and given to three significant figures with no units.	[1]
(ii)	D3/C1	Uses $\frac{\sqrt{\kappa_c}}{2+\sqrt{\kappa_c}}$ = gradient (value or y/a) and provides working	[1]
		Gives value of K₀	[1]
(d)	P4	The hydrogen with air / oxygen is explosive at 760K / raised temperature	[1]
(e)	E4	Faster reaction / increased rate	[1] [1]
		The value of K _c would be unaffected	111
(f) (i)	E4/C2	The line drawn on the graph has a less steep gradient	
(ii)		The equilibrium constant will be smaller	[1]
			[15]

Q# 45/ ALvl Chemistry/2015/s/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org :o)

(II 43) / LVI CII	1 Ciriloti y/ 2013/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
1 (a) (i)	M10	HCOO ⁻ (aq)	[1] [1]
(ii)	M6	Magnesium methanoate is 1.312 mol dm ⁻³	[1]
		[HCOO ⁻ (aq)] = 2.624 mol dm ⁻³	
			[1]
(iii)	M6	Use volumetric apparatus (to measure 5.0 cm ³ / saturated (magnesium) methanoate solution).	[1]
		Make (the above) up to the mark (with water) in a 250 cm³ volumetric / graduated flask	[1]
(iv)	M3/P4	H* is needed for the reaction with manganite	[1]
		Provided the acid is in excess / sufficient / enough, the volume does not matter	[1]
(v)	М5	A <u>pale</u> pink colour	[1]
(vi)	M10	0.051 mol dm ⁻³	[1]
(vii)	M10	1.28 mol dm ⁻³	[1]
(b)	P1/P2	(Independent) Temperature	
		(Dependent) Concentration of magnesium methanoate	[1]
(c)	P3	ΔH is positive	[1]
		(An increase in temperature) will favour / promote / increase / a movement in the direction of the endothermic change / reaction	[1]
(d)	P3	Precipitate is formed / barium sulfate is insoluble / insoluble product	[1]

Q# 46/ ALvl Chemistry/2014/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org :0)

2	(a)		All plotted points correctly drawn	1	
			The best fit line should pass through or lie close to the first 10 points. (If all points do not lie on the line then the net deviation of the non-anomalous points on each side of the best fit line must be approximately the same.)	1	[2]
	(b)	(b) The point at 12.00 cm³ is an anomaly. (ECF from incorrect anomalous point.)			
			The sodium hydroxide has not been properly mixed with the acid OR insufficient sodium hydroxide was added.	1	[2]
	(c)		Indicator range between 6.5 and 11 for a minimum of 1 pH unit change.	1	[1]
	(d)	(i)	Any two of the following: Na ⁺ , A ⁻ , HA	1	[1]
		(ii)	They will all have (nearly) the same concentration OR A ⁻ > Na ⁺ > HA	1	
			Half of the HA has reacted with/been neutralised by/used up by the NaOH	1	[2]
	(e)		Reads correct value of pH from the graph drawn	1	
			Gives correct expression for K _a	1	
			Calculates K _a	1	[3]
	(f)	(i)	$[H^{+}] = 0.00389 \text{ mol dm}^{-3} \text{ OR } [H^{+}] = [A^{-}]$ ECF as (ans to $[H^{+}])^{2}$ /(ans to (e))	1	
			Calculates [HA] correctly based on the pH read from the graph	1	[2]
		(ii)	Conc of HA = 4 × 2.7 = 10.8 g dm ⁻³ Relative molecular mass of HA = 10.8/ 2(f)(i)	1	[1]
	(g)		Any appropriate error discussion e.g.: many readings / measurements are taken each of which will have an error., the H ⁺ from the water has been ignored, no pH reading was taken at 15.00 cm ³ , H ⁺ is not exactly equal to A ⁻ temperature varies during titration, graph drawn by hand is not very accurate, experiment not repeated.	1	[1]
				Total	15

Q# 47/ ALvl Chemistry/2006/w/TZ 1/ Paper 5/Q# 1/www.SmashingScience.org :0)

1 Give one mark if the temperature of solutions FB 1 and FB 2 and all maximum temperatures are

recorded to one decimal place.

Withhold this mark if temperatures are recorded to 2 decimal places.

Give one mark if the average temperature, correct to 1 decimal place, has been calculated for

FB 1 and FB 2 (do not penalise decimal places twice)

and

the temperature rise for 0.07 mole (or 0.04 mole if appropriate) has been

correctly calculated.

Accuracy

Record the Supervisor's standard, ringed, below the temperature rise box for experiment 2 (or experiment 5 if more appropriate).

Compare the candidate's temperature rise (corrected if necessary) for experiment 2 (or experiment 5 if more appropriate) with that obtained by the Supervisor.

[2]

Award marks as follows:

difference in ΔT / °C	mark
0 to 0.5	4
0.5+ to 1.0	3
1.0+ to 2.0	2
2.0+ to 3.0	1
Greater than 3.0	0

[4]

(a) Check the plotting of points for 0.08, 0.07, 0.04 and 0.03 mole of sodium hydroxide.

Give two marks if all four points have been correctly plotted.

Deduct one mark (no negative marks) for each point that has been incorrectly plotted.

Points that are on a vertical line of the grid (moles of NaOH) must be placed on the line – check the position of the centre of the cross or dot.

(Penalise an error in the precision of placing an otherwise correct point only once)

If uncertain about the position of the centre of a cross or dot check the other plotted points.

Apply the penalty if there are two or more uncertainties

points on the y-axis (ΔT) should be plotted in the correct small square and within $\frac{1}{2}$ small square of the position determined by the Examiner.

Also deduct from these two plotting marks (no negative marks) one mark for each of the following graphical errors:

- (i) moles of NaOH plotted on y-axis and ΔT plotted on the x-axis
- (ii) measured temperature (T) plotted instead of ΔT
- (iii) points are plotted in less than 4 large squares on either axis or an inappropriate scale has been selected.

[2]

(b) Give one mark if two straight lines have been drawn through the points and intersect. Accept two straight lines that meet (and stop) providing there is no free-hand drawing where the lines meet.

Do not give this mark if curves have been drawn.

If solutions have been carefully prepared there should be 3 points on each straight line with an end point between 0.05 and 0.06 mole of sodium hydroxide.

[1]

(c) Give one mark for correctly reading (correct to ½ small square) the moles of sodium hydroxide at the end-point from the graph.

Accept a value from the intersection of any two straight lines or curves or the maximum of the graph if the two lines have been rounded.

(d) Give one mark for correctly calculating the volume of sulphuric acid at the end-point:

Reacting Quantities	
moles of NaOH	volume of H ₂ SO ₄ / cm ³
0.08	10
0.07	15
0.06	20
0.05	25
0.04	30
0.03	35

[1]

Three ways of calculating the volume of H₂SO₄

(i) Volume of
$$H_2SO_4 = 50 - \frac{40}{0.08} \times \text{moles NaOH from graph}$$

(ii) by inspection:

moles NaOH	0.050	0.052	0.054	0.056	0.058	0.060
Volume H ₂ SO ₄ /cm ³	25.00	24.00	23.00	22.00	21.00	20.00

(iii) calculates the volume of sodium hydroxide

$$\frac{2.0 \text{ x volume}}{1000} = \text{moles NaOH from graph}, \text{ then calculates volume of H}_2\text{SO}_4$$
 volume of H $_2\text{SO}_4$ = 50 – volume of NaOH

(e) Give one mark for ans (c)
$$x \frac{1}{2}$$

[1]

(f) Give one mark for ans (e)
$$x = \frac{1000}{ans(d)}$$

[1]

Enthalpy change

check and correct if necessary the subtractions in Table 1.3

record the candidate's value alongside the Supervisor's value.

calculate, and record, the difference between the Supervisor and candidate.

Award accuracy marks as follows:

difference to Supervisor	mark		
Up to 0.2	4		
0.2+ to 0.4	3		
0.4+ to 0.6	2		
0.6+ to 1.0	1		
Greater than 1.0	0		

Deduct one mark from those awarded for accuracy (no negative marks) for each of the following:

- in Table 1.3, any <u>mass measurement</u> has not been recorded to at least two decimal places.
 - (This does not apply to a calculated mass of FB 3.)
- (ii) there is a subtraction error in Table 1.3

[4]

(g) Give one mark for 50 x 4.3 x (candidate's temperature rise from Table 1.3) or

50 x 4.3 x (candidate's temperature rise from Table 1.3) x
$$\frac{1}{1000}$$

[1]

- (h) Give one mark for <u>either</u> of these expressions:
 - (i) Moles of sodium hydroxide = $\frac{\text{mass from Table 1.3}}{40}$
 - (ii) Moles of sulphuric acid = $\frac{50}{1000}$ x concentration calculated in (f) OR

 Moles of sulphuric acid = $\frac{50}{1000}$ x 1.5

Give one further mark for both expressions and correct statement of the reagent in excess.

If $(2 \times \text{moles of H}_2SO_4) > \text{moles of NaOH then H}_2SO_4$ is in excess.

If (2 x moles of H₂SO₄) < moles of NaOH then NaOH is in excess.

(i) Give one mark for the following:

If sulphuric acid is stated as in excess in (h),

$$\frac{\text{ans (g)}}{\text{moles of NaOH from (h)}} \times \frac{1}{1000}$$

If sodium hydroxide is in excess in (h),

$$\frac{\text{ans (g)}}{\text{moles of H}_2 \text{SO}_4 \text{ from (h)}} \times \frac{1}{1000} \times \frac{1}{2}$$

Do not give this mark unless the numerical value is correctly in kJ.

Give one mark if a negative (-ve) sign is shown. This is an independent mark.

[2]

There are 22 marking points in question 1.

Record the marks awarded and cancel any marks in excess of 20, recording 20 Max.

Q# 48/ ALvl Chemistry/2005/w/TZ 1/ Paper 5/Q# 2/www.SmashingScience.org

2 Assessment of planning skills

(a) **Outline Plan**

Give one mark for mixing two pairs of solutions.

Do not give this mark if all three pairs have been mixed.

[1]

Give one mark for stating that an acid/alkali pair will have a (large) temperature rise but an acid/acid pair will have no (or minimal) temperature change.

Results

Give one mark for a suitable tabulation of results including units.

[1]

Give one mark if one (or two) pair(s) show a significant temperature rise and one pair has virtually no temperature change

and

FB 5 is identified as the solution containing sodium hydroxide.

[1]

Give one mark for using twice the volume of sodium hydroxide compared to sulphuric acid. (b)

[1]

Give one mark for predicting that the temperature rise will be twice as great when 1.0 mol dm⁻³ sulphuric acid is used. [1]

Results

Give one mark for suitable tabulation of results.

Do not penalise absence of units if already penalised in (a).

Give one mark if initial temperatures are recorded for each solution.

Give one mark if one pair has approximately twice the temperature rise of the other pair.

[3]

Identity

Give one mark if the solutions are correctly identified.

FB 3 is 0.05 mol dm⁻³ H₂SO⁴ FB 4 is 1.00 mol dm⁻³ H₂SO⁴ FB 5 is 1.00 mol dm⁻³ NaOH

[Total for Question 2: 10 marks