iG Chem ALL EQ FINAL MASTER P3 2015w to 2014s Papers 32 and 33 only 2023marks

Contents

Periodic Ta	ole of elements		3
How grad	de thresholds have changed acr	oss the years	4
Revision	Timtable – Use this to assign bl	ocks of time to different timeper	iods5
Calender	for the next few months		6
Section 1 Page	ast exam questions, not publish	ed by me before by topic	8
Topic	Chem 1		8
Topic	Chem 2		10
Topic	Chem 3		11
Topic	Chem 4		20
Topic	Chem 5		26
Topic	Chem 6		30
Topic	Chem 7		32
Topic	Chem 8		41
Topic	Chem 9		48
Topic	Chem 10		51
Topic	Chem 11		61
Topic	Chem 12		68
Topic	Chem 13		69
Topic	Chem 14		71
Mark Scher	ne for Section 1		85
MS Topic	: Chem 1		85
MS Topic	: Chem 2		85
MS Topic	: Chem 3		86
MS Topic	: Chem 4		88
			90
			92
			93
•			96
			100
			101
Patrick Bran		www. Smashing Science.org	

MS Topic Chem 11	105
MS Topic Chem 12	109
MS Topic Chem 13	109
MS Topic Chem 14	110
Section 2: Past Exam Questions Covering Topics 8, 10, 11, 12 13 And 14	118
iG Chem 8 EQ P3 Acids, bases and salts 15w to 01s NEW 188marks	118
Tests for ions (Topic 8)	119
Mark Scheme iG Chem 8 EQ P3 Acids, bases and salts	140
iG Chem 8 EQ P6 Tests for Ions 17w to 16m 161marks	149
Mark Scheme iG Chem 8 EQ P6 Tests for lons	169
iG Chem 10 P3 Metals 15w to 06s Broken into Subtopics194marks	174
Mark Scheme iG Chem 10 P3 Metals 15w to 06s	195
iG Chem 11 EQ P5 15w to 01w Air and Water Broken down by subtopic 124marks	204
Mark Scheme iG Chem 11 EQ P5 15w to 01w Air and Water	218
iG Chem 12 13 EQ P3 15w to 01w 100marks	224
Mark Scheme iG Chem 12 13 EQ P3 15w to 01w 100marks	235
iG Chem 12 13 EQ P3 15w to 01w 100marks	240
Mark Scheme iG Chem 12 13 EQ P3 15w to 01w 100marks	251
iG Chem 14 EQ P3 Organic Chemistry 15w to 09s P3 216marks By SUBTOPIC	256
Mark Scheme iG Chem 14 FO P3 Organic Chemistry	284

DATA SHEET
The Periodic Table of the Elements

	0	4 T	mnile	20	Ne	eon	10	۲,	Argon	34	ح	Krypton	31	Xe	none		Ru	nope				
			- He	,,,	_	10 N	4	_	18			36			54		<u>"</u>	86 86				
				19	ш	Fluorine 9	35.5	CI	Chlorine 17	80	Ā	Bromine 35	127	н	lodine 53		¥	Astatine 85				,
	5			16	0	Oxygen 8	32	S		79	Se	Selenium 34	128	Ъ	Tellurium 52		Po	Polonium 84				
	>			14	z	Nitrogen 7	31	۵	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	509	Ξ	Bismuth 83				
	2			12	ပ	Carbon 6	28	S	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82				
	≡			=	В	Boron 5	27	Αl	Aluminium 13	70	Ga	Gallium 31	115	I n	Indium 49	204	11	Thallium 81				
										65	Zu	Zinc 30	112	ဦ	Cadmium 48	201	Нg	Mercury 80				
										64	Cn	Copper 29			Silver 47		Αn	Gold 79				
Group										69	Z	Nickel 28	106	Pd	Palladium 46	195	ቷ	Platinum 78				
Gre										59	ပိ	Cobalt 27			_	192	'n	Iridium 77				
		- I	Hydrogen 1							99	Fe	Iron 26	101		E	190	Os	Osmium 76				
										55	Mn	Manganese 25		ဥ	Technetium 43	186	Re	Rhenium 75				
										52	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	>	Tungsten 74				
										51	>	Vanadium 23	93	QN	Niobium 41	181	Та	Tantalum 73				
										48	F	Titanium 22	91	Zr	Zirconium 40	178	Έ	7				_
										45	Sc	Scandium 21	89	>	Yttrium 39	139	Гa	Lanthanum 57 *	227	Ac	Actinium #	
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	ca	Calcium 20	88	Š	Strontium 38	137	Ba	Barium 56	226	Ra	Radium 88	
	_			7	=	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55		ቷ	Francium 87	

Yb Ytterbium 70	Nobelium 102
169 Tm Thulium	www.Smashing cience.Org
167 Er Erbium 68	www.S
Ho Holmium 67	SMASSHINGER
162 Dy Dysprosium 66	Cf Californium 98
159 Tb Terbium 65	BK Berkelium 97
Gd Gadolinium 64	Curium 96
152 Eu Europium 63	Am Americium 95
Sm Samarium 62	Pu Plutonium 94
Pm Promethium 61	Np Neptunium 93
Neodymium 60	238 U Uranium 92
Pr Praseodymium 59	Pa Protactinium 91
140 Ce Cerium	232 Th Thorium

Lu Lutetium

۲

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic massX = atomic symbol

в **×**

Key

*58-71 Lanthanoid series 190-103 Actinoid series

How grade thresholds have changed across the years

GRADE THRESHOLDS FOR EXTENDED CHEMISTRY 0620 FROM JUN2019 TO JUN2014 A*-C WITH THE PROPORTION OF STUDENTS AWARDED AN A* 100.0 90.0 80.0 % NEEDED TO GET GRADE (WEIGHTED TOTAL) 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 Jun-14 Nov-14 Mar-15 Jun-15 Nov-15 Mar-16 Jun-16 Nov-16 Mar-17 Jun-17 Nov-17 Mar-18 Jun-18 Nov-18 Mar-19 Jun-19 73.8 74.3 79.5 71.3 77.8 80.5 68.3 73.5 76.7 76.7 82.5 78.0 80.2 86.0 83.5 75.0 64.5 63.8 70.0 65.8 71.0 59.5 62.7 65.0 65.0 71.5 64.7 74.0 69.8 62.2 64.5 68.2 55.3 53.3 60.5 53.0 53.8 61.5 50.7 51.8 54.0 53.3 53.3 60.5 51.3 56.2 62.0 56.2 46.3 42.8 51.5 44.2 42.0 52.0 42.0 41.3 44.0 42.0 42.0 49.5 38.2 44.3 50.5 42.5

30.9

19.5

20.3

17.6

29.9

16.4

———— % Stds w/ A*

29.6

17.6

24.6

16.5

24.5

27.6

Revision Timtable – Use this to assign blocks of time to different subjects

Period	Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	5:00 AM							
	5:30 AM							
	6:00 AM							
	6:30 AM							
	7:00 AM							
Regstn	7:45 AM							
1	8:00 AM							
2	8:50 AM							
Break	9:35 AM							
3	9:45 AM							
4	10:35 AM							
Lunch 5	11:25 AM							
Lunch 6	12:10 PM							
7	1:00 PM							
8	1:55 PM							
9	2:45 PM							
10	3:30 PM							
	4:20 PM							
	5:00 PM							
	5:30 PM							
	6:00 PM							
	6:30 PM							
	7:00 PM							
	7:30 PM							
	8:00 PM							
	8:30 PM							
	9:00 PM							
	9:30 PM							
	10:00 PM							
	10:30 PM							

Calender for the next few months

School Week	Teach Week	Monday Start	Events	Your notes and events
			Tue 14th DL for all marks into SIMS for	
			EOS Report	
24	20	13-Jan	Fri 17th Last Teaching day of Semester	
25		20-Jan	Spring Festival	
26		27-Jan		
			Sun 9th AM Students and teachers in	
27		3-Feb	for Registration, PM Students Assembly	
			Mon 10th 2nd Semester teaching begins	
			Wed 13th G1, G2, PreA, IB1, AS & A2	
			reports issued	
			Sun 16th New spring classes in school	
28	21	10-Feb	9	
20	22	47 5-6	Fri 21st G1, G2, PreA IB1 Parents	
29	22	17-Feb	consultation (whole day)	
30	23	24-Feb		
31	24	2-Mar		
22	25	0.14	Fri 13th Completion of 2nd Student	
32	25	9-Mar	•	
			Fri 20th DL G2, PreA, AS and A2 syllabi completed	
33	26	16-Mar	Sun 22nd UCS Spring Concert	
34	27	23-Mar	Mon 23rd Guided revision starts	
34	21	25 17101		
35	28	30-Mar	Thu 2nd Guided revision ends Fri 3rd Qing Ming Holiday	
33	20	30-iviai	Mon 6th EoY EXAMS START G2, preA,	
			AS & A2)	
36	29	6-Apr	Sat 11th Making up day (EXAM day)	
37	30	13-Apr		
		le.	Fri 24th G2, & PreA Optional Course	
38	31	20-Apr	•	
39	32	27-Apr	Fri 1st May OFF Mayday Holiday	
		· ·	Wed 6th DL All marks for G2, PreA, AS &	
40	33	4-May	A2 in SIMS	

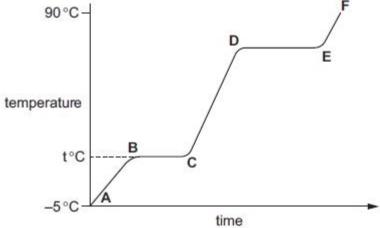
School Week	Teach Week	Monday Start	Events	Your notes and events
41	34	11-May		
42	35	18-May		
			Mon 25 to Fri 29th EoY EXAMS for G1	
			and IB1	
			Fri 29th DL for Submission of	
43	36	25-May	Departmental Budgets	Sun 31st DL for payments of students tuition and dormatory fees
			Mon 1st G2, PreA, AS and A2 reports	
			issued	
44	37	1-Jun	Fri 5th DL for inputting G1 marks	
45	38	8-Jun		
			Wed 17th CAIE Summer session ends	
			Fri 19th Last day of 2019 to 2020 Academic Year	
46	39	15-Jun		
40	33	22-Jun	·	
		29-Jun	·	
			Summer Holidays	
		6-Jul	Summer Holidays	
		13-Jul	Summer Holidays	
		20-Jul	Summer Holidays	
		27-Jul	Summer Holidays	
			Summer Holidays	
			Sun 9th G1 and PreA studnets and form	
		3-Aug	tutors in school for registration	
			Sun 16th C6 AS & A2 students	
			registration	
			Sun 16th UCS Opening Ceremony All	
		40.4	Staff am: G1, G2 & PreA, pm AS, A2 &	
		10-Aug		
	1	17 4	Mon 17th Teaching for 2021 to 2022	
	1	17-Aug	year begins	

Section 1 Past exam questions, not published by me before by topic

Topic Chem 1 Q# 1/ iGCSE Chemistry/2015/s/Paper 32/Q2

2 The table shows the melting points, boiling points and electrical properties of five substances, A to E.

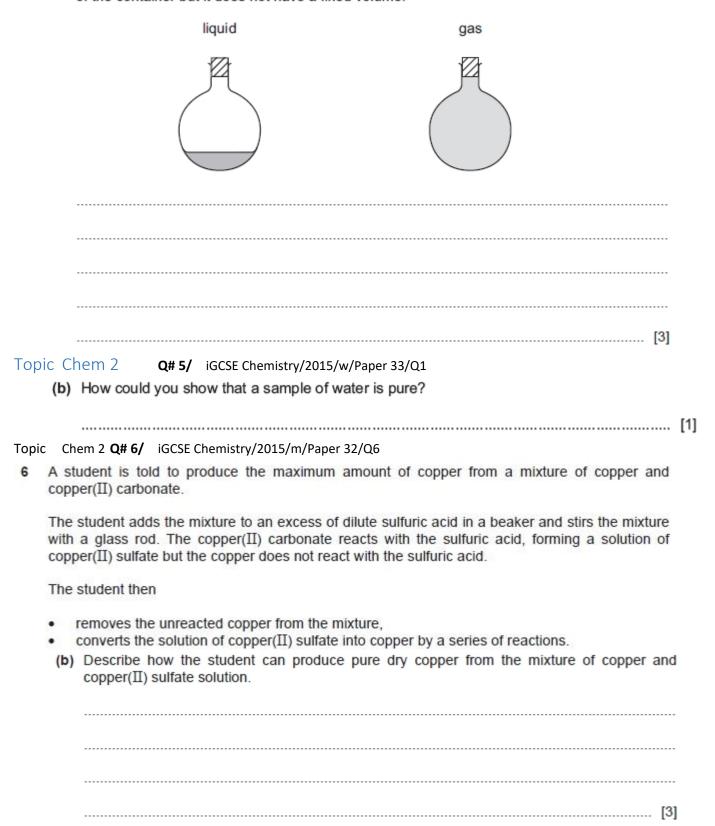
substance	melting point /°C	boiling point /°C	electrical conductivity of solid	electrical conductivity of liquid
Α	-7	59	poor	poor
В	1083	2567	good	good
С	755	1387	poor	good
D	43	181	poor	poor
E	1607	2227	poor	poor


Choose a substance from the table above to match each of the following descriptions. A substance may be used once, more than once or not at all. Justify each choice with evidence from the table.

One has	been	completed	as	an	exam	ple.
---------	------	-----------	----	----	------	------

	This substance is covalent and is a solid at room temperature (25 °C)D.
	evidence Its melting point is above room temperature. It has a low melting point and it does
	not conduct as a liquid, so it is covalent.
(c)	This substance is a liquid at room temperature (25°C).
	evidence
	[3]

opic	Chen			istry/2014/w/Pa ance of tempera	•			
								[1]
	(iii)	What is	the physica	I state of comp	ound X in the	region EF?		
								[1]
2 C	ompo	ound X is	a colourless	liquid at room	temperature.			
(6	wh	ich is ab		g point. Its tem				point, to 90°C, the results are
			90°C	;-		/	F	


Горіс		em 1 Q# 3/ iGCSE Chemistry/2014/w/Paper 33/Q2	
2 0	comp (ii)	ound X is a colourless liquid at room temperature.) What is the significance of temperature t°C?	
		[1]
	(iii) What is the physical state of compound X in the region EF?	
			1]
(b)	Cor	mpound X is a hydrocarbon. It contains 85.7% of carbon. The mass of one mole of X is 84 g.	
	(i)	What is the percentage of hydrogen in the compound ?	
		[1]	
	(ii)	Calculate the empirical formula of X. Show your working.	

	empirical formula =	[3]
(iii)	What is the molecular formula of compound X?	

Topic Chem 1 Q# 4/ iGCSE Chemistry/2014/s/Paper 33/Q2

(b) A liquid has a fixed volume but takes up the shape of the container. A gas takes up the shape of the container but it does not have a fixed volume.

Topic 1			2 Q#7/ iGCSE Chemortant aspect of chem	· · · · · · · · · · · · · · · · · · ·	w/Paper 32/Q1 urity and methods of purification.	
	(a)	Giv	e an example of sul	bstances us	ised in everyday life which must be pure.	
					[1]]
	(b)	A li	st of techniques use	d to separat	ate mixtures is given below.	
			chromatogra	phy crys	ystallisation diffusion dissolving	
			evaporation fi	Itration	fractional distillation simple distillation	
		(i)	From the list, choo	se the most	st suitable technique to separate the following.	
			water from sea-wa	ter		
			helium from a mixt	ure of heliur	um and methane	
			ethanol from a mix	ture of etha	anol and propanol	
					ron filings and water	
			a mixture or two ar	nino acids, (, glycine and alanine[5]	
Topic	Ch	nem 2	Q# 8/ iGCSE Chem	istry/2014/s/	s/Paper 33/Q5	
(d)			uilibrium mixture lea monia could be sep		reaction chamber contains 15% ammonia. Suggest how in the mixture.	
					boiling point/°C	
				hydrogen	-253	
				nitrogen	-196	
				ammonia	-33	
					[2]	
Topi					y/2015/w/Paper 33/Q6	
	(d)	W	nat is the formula of	f a magnesi	sium ion?	
						[1]
Topic	Ch	iem 3	Q# 10/ iGCSE Chem	istry/2015/w,	w/Paper 33/Q3	
3			bromide is an ion . It cannot be elect		and. It can be electrolysed when it is molten or in aque a solid.	ous
	(a)		id lithium bromide is y are held in an ion		onductor of electricity. The ions cannot move to the electrod by strong forces.	les,
		(i)	Describe the moti	on of the io	ons in the solid state.	

		(ii)	Define the term	ionic bon	ding.							
		(iii)	What is meant by									[2]
Тор 6	The elec	tabl trons	Q# 11/ iGCSE Cher le below shows t s in their outer er points.	mistry/201 he elem	L5/w/Pape ents in t	er 32/Q6 the third	period o	f the Pe	riodic Ta	ible, the	number	of
	elem	ent		Na	Mg	Αl	Si	Р	S	Cl	Аг	
	numb	er o	f outer electrons	1	2	3	4	5	6	7	8	
	oxida	tion	state	+1	+2	+3	+4/_4	-3	-2	-1	0	
	melti	ng po	oint/°C	98	650	660	1414	317	115	-1 01	-189	
	(a)		cribe the structure				o of alast	rioib.				
			ch element exists	as diato	mic mole	ecules of		X ₂ ?				[1] [1]
	(e)		on has a similar s				nt in the p	eriod.				
												[2]

(f)	odium chloride is a crystalline solid with a high melting point. It dissolves in water to giventral solution. Phosphorus trichloride is a liquid at room temperature. It reacts with water man acidic solution.	
	uggest an explanation for these differences in properties.	
(h)	raw a dot-and-cross diagram showing the bonding in magnesium oxide. Show outer elec	
	only.	
		ro.
Topic	Chem 3 Q# 12/ iGCSE Chemistry/2015/w/Paper 32/Q1	[3]
1 1 1	Use your copy of the Periodic Table to help you answer some of these questions.	
	(a) Predict the formulae of the following compounds.	
	(i) nitrogen fluoride	
	(ii) phosphorus sulfide	[2
	(b) Deduce the formulae of the following ions.	
	(i) selenide	
	(ii) gallium	
		[2

Topic Chem 3 Q# 13/ iGCSE Chemistry/2015/s/Paper 33/Q2

2 This question is concerned with the following oxides.

aluminium oxide carbon monoxide copper(II) oxide silicon(IV) oxide sodium oxide sulfur dioxide zinc oxide

Choose **one** oxide from the above list to match each of the following descriptions. An oxide may be used once, more than once or not at all.

	(e)	This oxide has a giant covalent structure.	[1]
Topic	Ch	nem 3 Q# 14/ iGCSE Chemistry/2015/s/Paper 33/Q1	
4	Hee	a your capy of the Dariodic Table to help you answer those questions	

- 1 Use your copy of the Periodic Table to help you answer these questions.
 - (a) Predict the formula of each of the following compounds.
 - (i) aluminium fluoride [1]
 (ii) arsenic oxide [1]
 (iii) silicon bromide [1]
 - (b) Deduce the formula of each of the following ions.
 - (c) Draw a diagram showing the arrangement of the valency electrons in one molecule of the covalent compound carbon dioxide.

Use x to represent an electron from a carbon atom.
Use o to represent an electron from an oxygen atom.

Topic Chem 3 Q# 15/ iGCSE Chemistry/2015/s/Paper 32/Q2

2 The table shows the melting points, boiling points and electrical properties of five substances, A to E.

substance	melting point /°C	boiling point /°C	electrical conductivity of solid	electrical conductivity of liquid
Α	- 7	59	poor	poor
В	1083	2567	good	good
С	755	1387	poor	good
D	43	181	poor	poor
E	1607	2227	poor	poor

Choose a substance from the table above to match each of the following descriptions. A substance may be used once, more than once or not at all. Justify each choice with evidence from the table.

One has been completed as an example.

	This substance is covalent and is a solid at room temperature (25 °C)	
	evidence Its melting point is above room temperature. It has a low melting point and it does	S
	not conduct as a liquid, so it is covalent.	
	This and allows have a sixed an order to the same	
	This substance has a giant covalent structure.	
	evidence	
		[3]
(b)	This substance is a metal.	
	evidence	
		[2]
(d)	This substance is an ionic solid	
	evidence	
		[3

Topic Chem 3 Q# 16/ iGCSE Chemistry/2015/s/Paper 32/Q1

1 Complete the following table which gives the number of protons, electrons and neutrons in each of the five particles.

particle	number of protons	number of electrons	number of neutrons
	19	19	20
⁵⁶ Fe			
	3	2	4
⁷⁰ ₃₁ Ga ³⁺			
	34	36	45

[Total: 8]

Topic Chem 3 Q# 17/ iGCSE Chemistry/2015/m/Paper 32/Q3

3 Ammonia is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalyst at a temperature of 450 °C and a pressure of 200 atmospheres.

The equation for the reaction is as follows.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

The forward reaction is exothermic.

(g) Draw a dot-and-cross diagram to show the arrangement of the outer (valency) electrons in one molecule of ammonia.

Topic Chem 3 Q# 18/ iGCSE Chemistry/2015/m/Paper 32/Q2

2 (a) Define the term isotope.

[2]

(b) The table gives information about four particles, A, B, C and D.

Complete the table.

The first line has been done for you.

particle	number of protons	number of electrons	number of neutrons	nucleon number	symbol or formula
Α	6	6	6	12	С
В	11	10	12		
С	8		8		O ²⁻
D		10		28	A13+

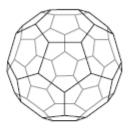
[Total: 9]

Topic Chem 3 Q# 19/ iGCSE Chemistry/2015/m/Paper 32/Q1

- 1 For each of the following, give the name of an element from Period 3 (sodium to argon), which matches the description.
 - (a) an element which is gaseous at room temperature and pressure

	14	1
	U	J

Topic Chem 3 Q# 20/ iGCSE Chemistry/2014/w/Paper 33/Q6


- 6 Rubidium and strontium are very reactive metals at the top of the reactivity series. Because their ions have different charges, their compounds behave differently when heated.
 - (a) The formulae of the ions of these two elements are Rb⁺ and Sr²⁺.

 Explain why these metals, which are in different groups, form ions which have different charges.

.....[2]

Topic Chem 3 Q# 21/ iGCSE Chemistry/2014/w/Paper 33/Q3

3 In 1985 the fullerenes were discovered. They are solid forms of the element carbon. The structure of the C₆₀ fullerene is given below.

(a) (i) In the C₆₀ fullerene, how many other carbon atoms is each carbon atom bonded to?

______[1]

(ii) Another fullerene has a relative molecular mass of 840. How many carbon atoms are there in one molecule of this fullerene?

(c) A		[
(c) A	mixture of a fullerene and potassium is an excellent conductor of electricity.) Which other form of solid carbon is a good conductor of electricity?	[
(i)	mixture of a fullerene and potassium is an excellent conductor of electricity.) Which other form of solid carbon is a good conductor of electricity?	
(i)) Which other form of solid carbon is a good conductor of electricity?	[
(ii)		[
		[
) Explain why metals, such as potassium, are good conductors of electricity.	
Chen		
	n 3 Q# 22/ iGCSE Chemistry/2014/w/Paper 33/Q1 ch of the following elements give one physical property:	[
(b) C	arbon _{graphite} (C)	
Chem	hysical property n 3 Q# 23/ iGCSE Chemistry/2014/s/Paper 33/Q4 Describe the structure of a typical metal such as iron. You may include a diagram.	
		[2]
(ii)	Explain why pure iron is malleable.	

Topic Chem 3 Q# 24/ iGCSE Chemistry/2014/s/Paper 32/Q6

(b) Scandium fluoride is an ionic compound. The valency of scandium in scandium fluoride is three.

Draw a diagram which shows the formula of this compound, the charges on the ions and the arrangement of the valency electrons around the negative ions.

Use x to represent an electron from a fluorine atom.

Use o to represent an electron from a scandium atom.

[3]

Topic Chem 3 Q# 25/ iGCSE Chemistry/2014/s/Paper 32/Q5

(c) The structural formula of carbonyl chloride is given below.

Draw a diagram showing the arrangement of the valency electrons around the atoms in one molecule of this covalent compound.

Use o to represent an electron from an oxygen atom.

Use x to represent an electron from a chlorine atom.

Use • to represent an electron from a carbon atom.

[3]

Topic Chem 3 Q# 26/ iGCSE Chemistry/2014/s/Paper 32/Q1

1 The table below gives the electron distributions of atoms of different elements.

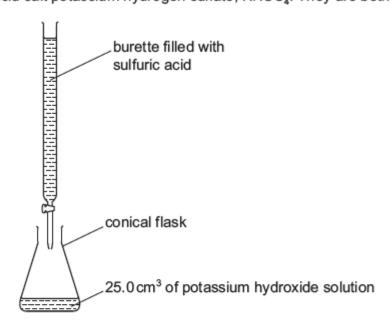
element	electron distribution
Α	2 + 7
В	2 + 8 + 4
С	2+8+8+1
D	2 + 8 + 18 + 5
E	2+8+18+7
F	2+8+18+18+8

For each of the following, select an element or elements from the table that matches the description. Each element may be selected once, more than once or not at all.

(b) This element forms a fluoride with a formula of the type XF₃.

.....[1]

(d) This element has a macromolecular structure similar to that of diamond.


.....[1]

(g) This element is a good conductor of electricity.

.....[1]

Topic Chem 4 Q# 27/ iGCSE Chemistry/2015/w/Paper 33/Q7

7 Two salts can be made from potassium hydroxide and sulfuric acid. They are potassium sulfate, K₂SO₄, and the acid salt potassium hydrogen sulfate, KHSO₄. They are both made by titration.

(a) 25.0 cm³ of potassium hydroxide, concentration 2.53 mol/dm³, was neutralised by 28.2 cm³ of dilute sulfuric acid.

$$2KOH(aq) + H2SO4(aq) \rightarrow K2SO4(aq) + $2H2O(I)$$$

Calculate the concentration of the sulfuric acid.

number of moles of KOH used =

number of moles of H₂SO₄ needed to neutralise the KOH =

concentration of dilute sulfuric acid = mol/dm3

[3]

Topic Chem 4 Q# 28/ iGCSE Chemistry/2015/w/Paper 33/Q6

(c) Deduce the formula of iron(III) sulfate.

......[1]

Topic Chem 4 Q# 29/ iGCSE Chemistry/2015/w/Paper 33/Q4

- (c) Hydrocarbons burn in excess oxygen to form carbon dioxide and water. 20 cm³ of a gaseous hydrocarbon burned in an excess of oxygen, 200 cm3. After cooling, the volume of the residual gas at r.t.p. was 150 cm³, 50 cm³ of which was oxygen.
 - (i) Determine the volume of the oxygen used.

......[1]

(ii) Determine the volume of the carbon dioxide formed.

......[1]

Topic Chem 4 Q# 30/ iGCSE Chemistry/2015/w/Paper 33/Q2

Choose from the following list of gases. A gas may be chosen once, more than once or not at all.

	sulfur dioxide	hydrogen	methane	carbon monoxide	
	argon	ethene	butane		
(b)	When burned in oxygen,	the only produc	t is water		[1]

- (e) When reacted with oxygen, the only product is carbon dioxide. [1]

Topic Chem 4 Q# 31/ iGCSE Chemistry/2015/w/Paper 32/Q4

- (a) Propane reacts with chlorine to form a mixture of chloropropanes. This is a photochemical reaction.
- (b) Bond breaking is an endothermic change and bond forming is an exothermic change.

Bond energy is the amount of energy in kJ/mol needed to break one mole of the specified bond.

Use the following bond energies to determine whether this reaction is exothermic or endothermic. You must show your reasoning.

Use the following bond energies to determine whether this reaction is exothermic or endothermic. You must show your reasoning.

bond	bond energies in kJ/mol
C–C1	338
C–H	412
C1–C1	242
H–C1	431
C_C	348

•	hem 4 Q# 32/ iGCSE Chemistry/2015/w/Paper 32/Q4 ppanol reacts with methanoic acid to form the ester propyl methanoate.	[3]
	CH ₃ CH ₂ CH ₂ OH + HCOOH → HCOOCH ₂ CH ₂ CH ₃ + H ₂ O	
4.0	g of methanoic acid was reacted with 6.0 g of propanol.	
(i)	Calculate the M _r of methanoic acid =	[1]
(ii)	Calculate the M _r of propanol =	[1]
(iii)	Determine which one is the limiting reagent. Show your reasoning.	
		[2]
(iv)	Calculate the maximum yield in grams of propyl methanoate, M_r = 88.	
		[1]
opic C	hem 4 Q# 33/ iGCSE Chemistry/2015/w/Paper 32/Q1	
	e your copy of the Periodic Table to help you answer some of these questions. Use the following ions to determine the formulae of the compounds.	
	ions OH- Cr ³⁺ Ba ²⁺ SO ₄ ²⁻	
	compounds	
	(i) chromium(III) sulfate	
	(ii) barium hydroxide	

Topic Chem 4 Q# 34/ iGCSE Chemistry/2015/s/Paper 33/Q5

5 The law of constant composition states that all pure samples of a compound contain the same elements in the same proportion by weight.

A typical experiment to test this law is to prepare the same compound by different methods and then show that the samples have the same composition.

Methods of making copper(II) oxide include:

- heating copper carbonate,
- heating copper hydroxide,
- heating copper nitrate,
- heating copper foil in air.
- (c) The table below shows the results obtained by reducing the copper(Π) oxide produced by different methods to copper.
 - Complete the table.

source of copper(II) oxide	mass of copper(II) oxide/g	mass of copper/g	percentage copper/%
CuCO ₃	2.37	1.89	79.7
Cu(OH) ₂	2.51	1.99	
Cu(NO ₃) ₂	2.11	1.68	
Cu and O₂	2.29	1.94	

[2]

		[2]
(ii)	One of the samples of copper(Π) oxide is impure.	
	Identify this sample and suggest an explanation why the percentage of copper i sample is bigger than in the other three samples.	n this
		[2]
- 500000 F	nem 4 Q# 35/ iGCSE Chemistry/2015/s/Paper 32/Q6	
(ii)	All these hydrates decompose to form copper(II) oxide.	
	1 mole of Cu(NO ₃) ₂ .xH ₂ O forms 1 mole of CuO.	
	What is meant by 1 mole of a substance?	
		[2]
(iii)	7.26 g of a hydrate, $Cu(NO_3)_2.xH_2O$, formed 2.4 g copper(II) oxide.	
	number of moles of CuO formed =	

number of moles of $Cu(NO_3)_2$.xH₂O in 7.26 g =

mass of 1 mole of $Cu(NO_3)_2.xH_2O =g$

mass of 1 mole of Cu(NO₃)₂ is 188 g the value of x in this hydrate = [4] Topic Chem 4 Q# 36/ iGCSE Chemistry/2015/s/Paper 32/Q3 (b) In the lattice of calcium nitride, the ratio of calcium ions to nitride ions is 3:2. (ii) In terms of ionic charges, explain why the ratio of ions is 3:2.[2] Topic Chem 4 Q# 37/ iGCSE Chemistry/2015/m/Paper 32/Q7 7 Ethanol is manufactured from glucose, C₆H₁₂O₆, by fermentation according to the following equation. $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ (b) In an experiment, 30.0 g of glucose was fermented. Calculate the number of moles of glucose in 30.0 g. mol [2] (ii) Calculate the maximum mass of ethanol that could be obtained from 30.0 g of glucose. g [2] (iii) Calculate the volume of carbon dioxide at room temperature and pressure that can be obtained from 30.0 g of glucose.

Topic Chem 4 Q# 38/ iGCSE Chemistry/2014/w/Paper 33/Q8

$$CoCO_3(s) + 2HCl(aq) \rightarrow CoCl_2(aq) + CO_2(g) + H_2O(l)$$

 $50\,\text{cm}^3$ of dilute hydrochloric acid, concentration $2.2\,\text{mol/dm}^3$, was heated and cobalt(II)

..... dm³ [1]

(c) 6.31 g of cobalt(II) chloride-6-water crystals were obtained. Calculate the percentage yield to 1 decimal place.

number of moles of HC1 in 50 cm³ of acid, concentration 2.2 mol/dm³ =

maximum number of moles of $CoCl_2.6H_2O$ which could be formed =

mass of 1 mole of $CoCl_2.6H_2O = 238g$

maximum yield of CoC1,.6H,O =g

percentage yield =%

[4]

Topic Chem 4 Q# 39/ iGCSE Chemistry/2014/w/Paper 32/Q6

(iii) A mineral of the type FeSO₄.xH₂O contains 37.2% of water. Complete the calculation to determine x.

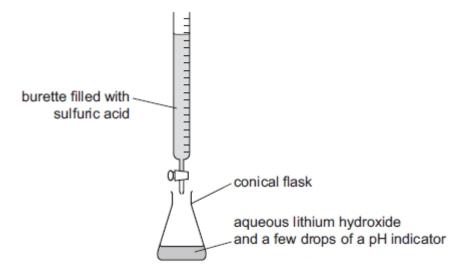
mass of one mole of H2O = 18g

mass of water in 100 g of FeSO₄.xH₂O = 37.2 g

number of moles of H2O in 100 g of FeSO4.xH2O =

mass of FeSO4 in 100 g of FeSO4.xH2O =g

mass of one mole of FeSO₄ = 152g


number of moles of FeSO₄ in 100 g of FeSO₄.xH₂O =

x =

[4]

Topic Chem 4 Q# 40/ iGCSE Chemistry/2014/s/Paper 32/Q7

7 The soluble salt hydrated lithium sulfate is made by titration from the soluble base lithium hydroxide.

(a) The sulfuric acid is added slowly from the burette until the indicator just changes colour. The volume of sulfuric acid needed to just neutralise the lithium hydroxide is noted.

(b) Using 25.0 cm³ of aqueous lithium hydroxide, concentration 2.48 mol/dm³, 2.20 g of hydrated lithium sulfate was obtained.

Calculate the percentage yield, giving your answer to one decimal place.

2LiOH +
$$H_2SO_4 \rightarrow Li_2SO_4 + 2H_2O$$

 $Li_2SO_4 + H_2O \rightarrow Li_2SO_4.H_2O$

Number of moles of LiOH used =

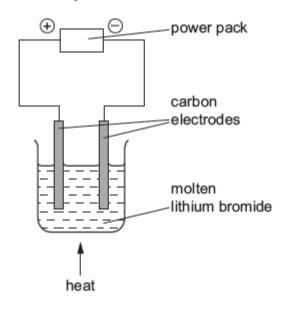
Number of moles of Li₂SO₄.H₂O which could be formed =

Mass of one mole of Li₂SO₄.H₂O = 128 g

Maximum yield of $Li_2SO_4.H_2O = \dots g$

Percentage yield =%

- (c) An experiment was carried out to show that the formula of the hydrated salt is Li₂SO₄.H₂O. A sample of the hydrated salt was weighed and its mass recorded. It was then heated and the anhydrous salt was weighed. This procedure was repeated until two consecutive masses were the same. This procedure is called 'heating to constant mass'.
 - (i) What is the reason for heating to constant mass?


г	4	1
 L		J

(ii) The mass of the hydrated salt is m₁ and the mass of the anhydrous salt is m₂. Explain how you could show that the hydrated salt has one mole of water of crystallisation per mole of the anhydrous salt.

-

Topic Chem 5 Q# 41/ iGCSE Chemistry/2015/w/Paper 33/Q3

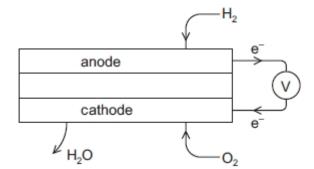
- 3 Lithium bromide is an ionic compound. It can be electrolysed when it is molten or in aqueous solution. It cannot be electrolysed as a solid.
 - (b) The diagram shows the electrolysis of molten lithium bromide.

	(i)	Mark on the diagram the direction of the electron flow.	[1]
	(ii)	Write an ionic equation for the reaction at the negative electrode (cathode).	
	(iii)	Write an ionic equation for the reaction at the positive electrode (anode).	[1]
(c)		aqueous lithium bromide is electrolysed, a colourless gas is formed at the neg ode and the solution becomes alkaline.	
	Expla	in these observations and include an equation in your explanation.	
Topic	Chen	m 5 Q# 42/ iGCSE Chemistry/2015/w/Paper 32/Q3	. [3]
3	Two	of the main uses of zinc are for galvanising and for making alloys.	
	One of	of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zore.	zinc from
	(c)	Stage 1 Zinc oxide is made from zinc blende. The zinc produced by this process is impure. It can be purified by electrolysis using which is similar to the purification of copper. Under the conditions used in the proce the product at the negative electrode (cathode).	
		Complete the following description of this purification.	
		The electrolyte is aqueous	[1]
		The negative electrode (cathode) is made of	[1]
		The positive electrode (anode) is impure zinc.	
		The equation for the reaction at the cathode is	[1]
		The equation for the reaction at the anode is	[1]
		Explain why the concentration of the electrolyte does not change.	

Topic Chem 5 Q# 43/ iGCSE Chemistry/2015/s/Paper 32/Q3

- Calcium reacts with nitrogen to form the ionic compound calcium nitride, Ca₃N₂.
 - (a) Draw a diagram, based on the correct formula, which shows the charges on the ions and the arrangement of the electrons around the negative ion.

Use o to represent an electron from a calcium atom. Use x to represent an electron from a nitrogen atom.

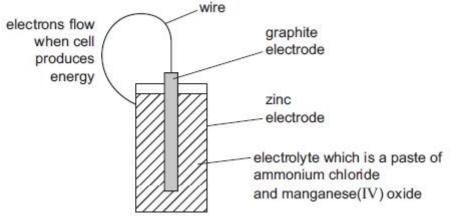

r		-	v	٦
		4	t	ı
	٦	J	,	۰

- (b) In the lattice of calcium nitride, the ratio of calcium ions to nitride ions is 3:2.
 - (i) What is meant by the term lattice?

[2]

Topic Chem 5 Q# 44/ iGCSE Chemistry/2014/w/Paper 33/Q4

A fuel cell produces electrical energy by the oxidation of a fuel by oxygen. The fuel is usually hydrogen but methane and methanol are two other fuels which may be used. A diagram of a hydrogen fuel cell is given below.


(b) Write the equation for the chemical reaction that takes place in a hydrogen fuel cell.

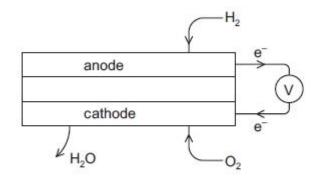
(c) (i) At which electrode does oxidation occur? Explain your choice.

Write an ionic equation for the reaction at this electrode.

Topic Chem 5 Q# 45/ iGCSE Chemistry/2014/w/Paper 32/Q4

- 4 Zinc is an important metal. Its uses include making alloys and the construction of dry cells (batteries).
 - (d) A dry cell (battery) has a central rod, usually made of graphite. This is the positive electrode which is surrounded by the electrolyte, typically a paste of ammonium chloride and manganese(IV) oxide, all of which are in a zinc container which is the negative electrode.

	(i)	Draw an arrow on the diagram to indicate the direction of electron flow.	[1]
	(ii)	Suggest why the electrolyte is a paste.	
			[1]
	(iii)	The following changes occur in a dry cell. For each change, decide if it is oxidation or reduction and give a reason for your choice.	e.
		Zn to Zn²+	
		$manganese(IV) \ oxide \ to \ manganese(III) \ oxide$	
			[2]
Topio	C Ch	nem 5 Q# 46/ iGCSE Chemistry/2014/s/Paper 33/Q7	
7	Alur	minium is obtained from purified alumina, At ₂ O ₃ , by electrolysis.	
		Describe the extraction of aluminium from alumina. Include the electrolyte, the electrode the reactions at the electrodes.	es and


(c) Aluminium is resistant to corrosion. It is protected by an oxide layer on its surface. The thickness of this oxide layer can be increased by anodising.

		(ii)	Anodising is an electrolytic process. Dilute sulfuric acid is electrolysed with an alumin object as the anode. The thickness of the oxide layer is increased. Complete the equati for the reactions at the aluminium anode.	
			OH $^- \rightarrow O_2 + 2H_2O +e^-$	
			\dots Al + \dots → \dots Al ₂ O ₃	[4]
Topic	Che	em 5	Q# 47/ iGCSE Chemistry/2014/s/Paper 32/Q5	
	(b)	Des	orine is made by the electrolysis of concentrated aqueous sodium chloride. cribe this electrolysis. Write ionic equations for the reactions at the electrodes and nar sodium compound formed.	me
Topic	. Ch			[5]
			6 Q# 48/ iGCSE Chemistry/2014/w/Paper 33/Q5	
(b) 1	The i	ons	present in aqueous sodium chloride are Na ⁺ (aq), C <i>l</i> ⁻ (aq), H ⁺ (aq) and OH ⁻ (aq).	
			rolysis of concentrated aqueous sodium chloride forms three products. They are , chlorine and sodium hydroxide.	
(ain how these three products are formed. Give ionic equations for the reactions at the rodes.	
	-			
			[4]	
(i	5	odiu	solution of the electrolyte is stirred, chlorine reacts with sodium hydroxide to form im chlorate(I), sodium chloride and water. an equation for this reaction.	
			N. A. N. O.I.	
		(Cl ₂ +NaOH → + +	

Topic Chem 6 Q# 49/ iGCSE Chemistry/2014/w/Paper 33/Q4

4 A fuel cell produces electrical energy by the oxidation of a fuel by oxygen. The fuel is usually hydrogen but methane and methanol are two other fuels which may be used. A diagram of a hydrogen fuel cell is given below.

(a) When the fuel is hydrogen, the only product is water. What additional product would be formed if methane was used?

			[1]
		Fuel cells are used to propel cars.	
		Give two advantages of a fuel cell over a gasoline-fuelled engine.	
			[2]
Topic	Che	em 6 Q# 50/ iGCSE Chemistry/2014/w/Paper 32/Q2	[4]
		(ii) How can sodium metal be obtained from sodium chloride?	
			[2]

Topic Chem 6 **Q# 51/** iGCSE Chemistry/2014/s/Paper 33/Q5

(e) Ammonia is used to make nitrogen trifluoride, NF₃.
Nitrogen trifluoride is essential to the electronics industry. It is made by the following reaction.

Determine if the above reaction is exothermic or endothermic using the following bond energies and by completing the following table. The first line has been done as an example. Bond energy is the amount of energy, in kJ/mole, needed to break or make one mole of the bond.

bond	bond energy in kJ/mole
N-H	390
F-F	155
N-F	280
H-F	565

bond	energy change/kJ
N-H	(3 × 390) = 1170
F-F	
N-F	
H-F	

	E 41

Topic Chem 6 Q# 52/ iGCSE Chemistry/2014/s/Paper 33/Q1

1 Choose a gas from the following list to answer the questions below. Each gas may be used once, more than once or not at all.

ammonia carbon dioxide carbon monoxide fluorine

hydrogen krypton nitrogen propene sulfur dioxide

(g) It burns to form water as the only product. [1]

Topic Chem 6 Q# 53/ iGCSE Chemistry/2014/s/Paper 32/Q2

2 (a) Natural gas, which is mainly methane, is a fossil fuel.

(i) What is meant by the term fuel?

[1]

(iii) Name a solid fuel which is not a fossil fuel.

Topic Chem 7 Q# 54/ iGCSE Chemistry/2015/w/Paper 33/Q5

(b) Sulfurous acid forms salts called sulfites, which contain the ion SO₃²-.

When barium nitrate solution is added to aqueous sulfurous acid, a white precipitate, A, forms.

......[1]

Bromine water changes from brown to colourless when added to aqueous sulfurous acid.

Bromine oxidises sulfurous acid. When this solution is tested with acidified barium nitrate solution, a different white precipitate, **B**, is formed.

(iii) Write an ionic equation for the reduction of the bromine molecule.

.....[1]

Topic Chem 7 Q# 55/ iGCSE Chemistry/2015/w/Paper 33/Q3 NOT WITH Q3 bii or biii

3 Lithium bromide is an ionic compound. It can be electrolysed when it is molten or in aqueous solution. It cannot be electrolysed as a solid.

The half equations for this reaction are given below:

$$Li^+ + e^- \rightarrow Li/Li^+ \rightarrow Li - e^-;$$

 $2Br^- \rightarrow Br_2 + 2e^-/2Br^- - 2e^- \rightarrow Br_2$

	(IV) Which ion is oxidis	sed? Ex	plain you	ır answe	er.				
Topic 6	Chem 7 Q# 56/ iGCSE Chem The table below shows to electrons in their outer en melting points.	istry/201 he elem	5/w/Papei ients in t	r 32/Q6 the third	period o	f the Pe	eriodic Ta	able, the	
33	element	Na	Mg	Αl	Si	Р	S	Cl	Ar
23	number of outer electrons	1	2	3	4	5	6	7	8
	oxidation state	+1	+2	+3	+4/_4	-3	-2	-1	0
	melting point/°C	98	650	660	1414	317	115	-101	-189
Topic 4 Topic (d	(a) Propane reacts with reaction. (i) What is meant by	the phr	5/w/Paper to form ase <i>phot</i>	r 32/Q4 a mixtur ochemic	re of chlor	ropropar n?	nes. This	s is a pho	
(i) Where does the energy for photosynthesis come from?								[1]	
	(ii) Give the word equatio	n for pho	otosynthe	esis.					
Topic	Chem 7 Q# 59/ iGCSE Chemistry/2015/s/Paper 33/Q3 Quicklime, which is calcium oxide, is made by heating limestone in a furnace.								[1]
		CaCC	O₃(s) ←	CaO(s)	+ CO ₂ (g))			
	The reaction does not come	e to equi	librium.						
	(a) Suggest why the conve	ersion to	calcium (oxide is o	complete.				
									[1]

Topic Chem 7 Q# 60/ iGCSE Chemistry/2015/s/Paper 32/Q7

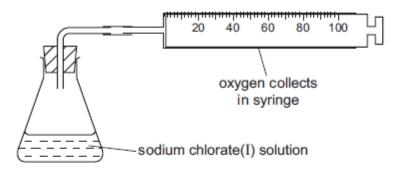
- 7 Alcohols can be made by fermentation or from petroleum.
 - (a) Ethanol can be made by the fermentation of glucose.

	ast are living single-cell fungi which ferment glucose by anaerobic respiration. This action is catalysed by enzymes from the yeast.					
(iii) What are enzymes?					
	[1]					
(iv) Suggest a method of measuring the rate of this reaction.					
(b) T	he following observations were noted.					
•	When a small amount of yeast was added to the aqueous glucose the reaction started and the solution went slightly cloudy.					
:	The reaction rate increased and the solution became cloudier and warmer. After a while, the reaction rate decreased and eventually stopped, leaving a 14% solution of ethanol in water.					
(i) Why did the reaction rate increase?					
	[1]					
(ii) Suggest an explanation for the increase in cloudiness of the solution.					
(iii) Give two reasons why the fermentation stopped.					
,						
	[2]					
(b) All	n 7 Q# 61/ iGCSE Chemistry/2015/s/Paper 32/Q6 nitrates decomposes when heated. The extent to which a nitrate decomposes is ermined by the metal in the salt.					
(ii)	Sodium nitrite is a reducing agent.					
	What would be observed if an excess of sodium nitrite solution was added to a solution of acidified potassium manganate(VII)?					

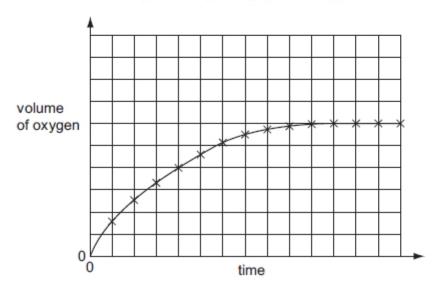
.....[2]

 ${\rm C_6H_{12}O_6(aq)} \xrightarrow{\quad \text{yeast} \quad} 2{\rm C_2H_5OH(aq)} \ + \ 2{\rm CO_2(g)} \ \text{exothermic reaction}$

Topic Chem 7 Q# 62/ iGCSE Chemistry/2015/s/Paper 32/Q3


(c) The reaction between calcium and nitrogen to form calcium nitride is a redox reaction.

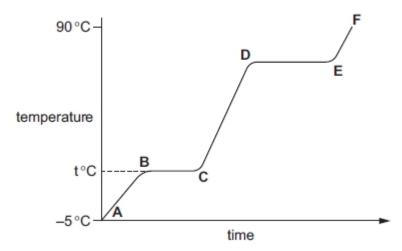
In terms of electron transfer, explain why calcium is the reducing agent.						
		[3]				
opic	Chem 7 Q# 63/ iGCSE Chemistry/2014/w/Paper 33/Q8					
8	(a) Describe how cobalt chloride paper can be used to test for the presence of water.					


Topic Chem 7 Q# 64/ iGCSE Chemistry/2014/w/Paper 33/Q5

(a) Sodium chlorate(I) decomposes to form sodium chloride and oxygen. The rate of this reaction 5 is very slow at room temperature provided the sodium chlorate(I) is stored in a dark bottle to prevent exposure to light.

The rate of this decomposition can be studied using the following experiment.

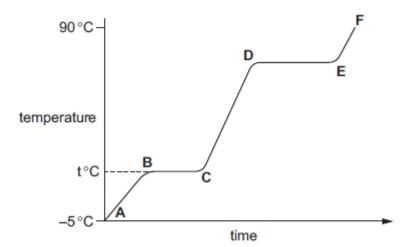
Sodium chlorate(I) is placed in the flask and 0.2 g of copper(II) oxide is added. This catalyses the decomposition of the sodium chlorate(I) and the volume of oxygen collected is measured every minute. The results are plotted to give a graph of the type shown below.



	(i)	Explain why the gradient (slope) of this graph decreases with time.						
			[2]					
	(ii)	$\label{eq:cobalt} \begin{tabular}{ll} Cobalt(II) oxide is a more efficient catalyst for this reaction than copper(II) oxide. \\ Sketch, on the grid, the graph for the reaction catalysed by cobalt(II) oxide. \\ All other conditions were kept constant. \\ \end{tabular}$	[2]					
(iii)	Wha	at can you deduce from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that sodium chlorate(I) has to be shielded from the comment that so the						
		[1]						
(iv)		lain, in terms of collisions between particles, why the initial gradient would be steeper e experiment was repeated at a higher temperature.						
		[3]						

Topic Chem 7 **Q# 65/** iGCSE Chemistry/2014/w/Paper 33/Q2

- Compound X is a colourless liquid at room temperature.
 - (a) A sample of pure X was slowly heated from -5.0 °C, which is below its melting point, to 90 °C, which is above its boiling point. Its temperature is measured every minute and the results are represented on the graph.


(i) Complete the equation for the equilibrium present in the region BC.

X(s) ⇌[1]

Topic Chem 7 Q# 66/ iGCSE Chemistry/2014/w/Paper 33/Q2

- Compound X is a colourless liquid at room temperature.
 - (a) A sample of pure X was slowly heated from -5.0 °C, which is below its melting point, to 90 °C, which is above its boiling point. Its temperature is measured every minute and the results are represented on the graph.

(i) Complete the equation for the equilibrium present in the region BC.

Topic Chem 7 Q# 67/ iGCSE Chemistry/2014/w/Paper 32/Q6

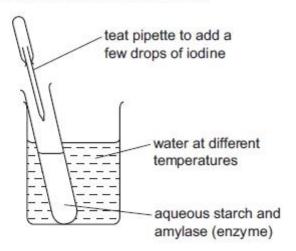
- 6 Sulfuric acid is an important acid, both in the laboratory and in industry. Sulfuric acid is manufactured in the Contact Process. Originally, it was made by heating metal sulfates and by burning a mixture of sulfur and potassium nitrate.
 - (b) A group of naturally occurring minerals have the formula of the type FeSO₄.xH₂O where x is 1, 4, 5, 6 or 7. The most common of these minerals is iron(II) sulfate-7-water.
 - When this mineral is heated gently it dehydrates.

$$FeSO_4.7H_2O \rightleftharpoons FeSO_4 + 7H_2O$$

green pale yellow

Describe how you could show that this reaction is reversible.

	[2]


Topic Chem 7 Q# 68/ iGCSE Chemistry/2014/w/Paper 32/Q5

(b) Starch hydrolyses to glucose in the presence of the enzyme, amylase. What is meant by the term enzyme?

(c) The effect of temperature on this reaction can be studied by the experiment shown below. Starch and iodine form a blue-black colour. Glucose and iodine do not form a blue-black colour.

The experiment is set up as in the diagram and the time measured for the mixture to change from blue-black to colourless. The experiment is repeated at different temperatures. Typical results of this experiment are given in the table below.

experiment	temperature /°C	time for blue-black colour to disappear / min
Α	20	30
В	40	15
С	70	remained blue-black

(i)	Put the experiments in order of reaction rate – slowest first and fastest last.
	[2]
(ii)	Explain why the reaction rates in experiments A and B are different.
	[3]
(iii)	Suggest why the colour remains blue-black in experiment C.
	[1]
Topic Ch	em 7 Q# 69/ iGCSE Chemistry/2014/s/Paper 33/Q3
3 (a)	Biological catalysts produced by microbes cause food to deteriorate and decay.
	(i) What is the name of these biological catalysts?

opic Chem 7 Q# 70/ iGCSE Chemistry/2014/s/Paper 33/O3 (e) Describe how the pea plant makes a sugar such as glucose.		(11)	Suggest why freezing is still a very effective way of preserving food.	
(c) Describe how the pea plant makes a sugar such as glucose. [3] [3] [3] [3] [4] [5] [6] [6] [7] [7] [7] [7] [8] [8] [9] [9] [9] [9] [9] [9		CI -		[2]
copic Chem 7 Q# 71/ iGCSE Chemistry/2014/s/Paper 33/Q2 Explain each of the following in terms of the kinetic particle theory. (a) The rate of most reactions increases at higher temperatures. [3] Fopic Chem 7 Q# 72/ iGCSE Chemistry/2014/s/Paper 32/Q5 Carbonyl chloride is made from carbon monoxide and chlorine. CO(g) + Ct₂(g) ⇌ COCt₂(g) (a) Two methods of preparing carbon monoxide are from methane and oxygen, and from methane and steam. (ii) The following reaction is used to make carbon monoxide and hydrogen. The reaction is carried out at 1100 °C and normal pressure. CH₄(g) + H₂O(g) ⇌ CO(g) + 3H₂(g) The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used.	•			
copic Chem 7 Q# 71/ iGCSE Chemistry/2014/s/Paper 33/Q2 Explain each of the following in terms of the kinetic particle theory. (a) The rate of most reactions increases at higher temperatures. [3] Fopic Chem 7 Q# 72/ iGCSE Chemistry/2014/s/Paper 32/Q5 Carbonyl chloride is made from carbon monoxide and chlorine. CO(g) + Ct₂(g) ⇌ COCt₂(g) (a) Two methods of preparing carbon monoxide are from methane and oxygen, and from methane and steam. (ii) The following reaction is used to make carbon monoxide and hydrogen. The reaction is carried out at 1100 °C and normal pressure. CH₄(g) + H₂O(g) ⇌ CO(g) + 3H₂(g) The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used.				
2 Explain each of the following in terms of the kinetic particle theory. (a) The rate of most reactions increases at higher temperatures. [3] Topic Chem 7 Q# 72/ iGCSE Chemistry/2014/s/Paper 32/Q5 Carbonyl chloride is made from carbon monoxide and chlorine. CO(g) + Cl₂(g) ⇌ COCl₂(g) (a) Two methods of preparing carbon monoxide are from methane and oxygen, and from methane and steam. (ii) The following reaction is used to make carbon monoxide and hydrogen. The reaction is carried out at 1100 °C and normal pressure. CH₂(g) + H₂O(g) ⇌ CO(g) + 3H₂(g) The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used.	onic			[3]
Topic Chem 7 Q# 72/ iGCSE Chemistry/2014/s/Paper 32/Q5 5 Carbonyl chloride is made from carbon monoxide and chlorine. CO(g) + Cl₂(g) ⇌ COCl₂(g) (a) Two methods of preparing carbon monoxide are from methane and oxygen, and from methane and steam. (ii) The following reaction is used to make carbon monoxide and hydrogen. The reaction is carried out at 1100 °C and normal pressure. CH₄(g) + H₂O(g) ⇌ CO(g) + 3H₂(g) The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used.	-			
opic Chem 7 Q# 72/ iGCSE Chemistry/2014/s/Paper 32/Q5 5 Carbonyl chloride is made from carbon monoxide and chlorine. CO(g) + Cl₂(g) ⇌ COCl₂(g) (a) Two methods of preparing carbon monoxide are from methane and oxygen, and from methane and steam. (ii) The following reaction is used to make carbon monoxide and hydrogen. The reaction is carried out at 1100 °C and normal pressure. CH₄(g) + H₂O(g) ⇌ CO(g) + 3H₂(g) The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used. [2]	((a) The	e rate of most reactions increases at higher temperatures.	
 (a) Two methods of preparing carbon monoxide are from methane and oxygen, and from methane and steam. (ii) The following reaction is used to make carbon monoxide and hydrogen. The reaction is carried out at 1100 °C and normal pressure. CH₄(g) + H₂O(g) CO(g) + 3H₂(g) The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used. 			Q# 72/ iGCSE Chemistry/2014/s/Paper 32/Q5	[3]
and steam. (ii) The following reaction is used to make carbon monoxide and hydrogen. The reaction is carried out at 1100 °C and normal pressure. $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$ The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used. [2]			$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$	
${\rm CH_4(g)} + {\rm H_2O(g)} \rightleftharpoons {\rm CO(g)} + 3{\rm H_2(g)}$ The reaction is reversible and comes to equilibrium. Suggest why a high temperature is used.	(a	and	steam. The following reaction is used to make carbon monoxide and hydrogen.	hane
used.				
				ture is
(iii) What is the disadvantage of using a high pressure for the reaction given in (a)(ii)?				[2]
[2]		(iii)	What is the disadvantage of using a high pressure for the reaction given in (a)(ii)?	
17.340				[2]

Topic Chem 7 Q# 73/ iGCSE Chemistry/2014/s/Paper 32/Q4

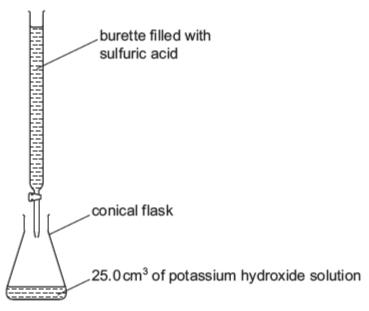
(d) A piece of magnesium was added to 100 cm³ of an aqueous acid. The time taken for the metal to react completely was measured. This experiment was repeated using different aqueous acids. The same volume of acid was used in each experiment and the pieces of magnesium used were identical. In one experiment the reaction was carried out at a different temperature.

experiment	acid	concentration in mol/dm ³	temperature /°C	time /minutes
Α	propanoic	1.0	20	5
В	propanoic	1.0	30	3
С	propanoic	0.5	20	8
D	hydrochloric	1.0	20	1

Explain the following in terms of collision rate between reacting particles.

(i)	Why is the rate in experiment C slower than the rate in experiment A?		
		[2]	
(ii)	Why is the rate in experiment B faster than the rate in experiment A ?		
		uuuuu	
		[2]	
(iii)	Why is the rate in experiment D faster than the rate in experiment A ?		
		[3]	

Topic Chem 7 **Q# 74/** iGCSE Chemistry/2014/s/Paper 32/Q1


1 The table below gives the electron distributions of atoms of different elements.

element	electron distribution
Α	2 + 7
В	2 + 8 + 4
С	2+8+8+1
D	2+8+18+5
E	2 + 8 + 18 + 7
F	2+8+18+18+8

For each of the following, select an element or elements from the table that matches the description. Each element may be selected once, more than once or not at all.

(e)	The only oxidation state of this element is U.	
		[1]
Γopic Ch	hem 8 Q# 75/ iGCSE Chemistry/2015/w/Paper 33/Q7	•

7 Two salts can be made from potassium hydroxide and sulfuric acid. They are potassium sulfate, K₂SO₄, and the acid salt potassium hydrogen sulfate, KHSO₄. They are both made by titration.

(b) In the conical flask there is a neutral solution of potassium sulfate which still contains the indicator used in the titration.

i)	Describe how you could obtain a solution of potassium sulfate without the indicator.	

(ii) Potassium hydrogen sulfate can be made by the following reaction.

$$\mathsf{KOH}(\mathsf{aq}) \; + \; \mathsf{H_2SO_4}(\mathsf{aq}) \; \rightarrow \; \mathsf{KHSO_4}(\mathsf{aq}) \; + \; \mathsf{H_2O(I)}$$

Suggest how you could make a solution of potassium hydrogen sulfate without using an indicator.

......[2]

(c) Describe a test which would distinguish between aqueous solutions of potassium sulfate and sulfuric acid.

test

Topic Chem 8 **Q# 76/** iGCSE Chemistry/2015/w/Paper 33/Q5

5 Sulfuric acid is a strong acid. In aqueous solution, it ionises as shown below.

$H_2SO_4 \rightarrow 2H^+ + SO_4$	₄ 2-
-----------------------------------	-----------------

(a) (i) What is meant by the term acid?					
		[1]			
	(ii)	Sulfurous acid, H ₂ SO ₃ , is a weak acid.			
		State the difference between a weak acid and a strong acid.			
		[2]			
(b)) Su	lfurous acid forms salts called sulfites, which contain the ion SO ₃ ²⁻ .			
	W	nen barium nitrate solution is added to aqueous sulfurous acid, a white precipitate, A , forms.			
	Br	omine water changes from brown to colourless when added to aqueous sulfurous acid.			
Bromine oxidises sulfurous acid. When this solution is tested with acidified bariu solution, a different white precipitate, B , is formed.					
	Identify the white precipitate, A.				
		[1]			
	(ii)	Identify the white precipitate, B .			
	(iv)	Name the product formed by the oxidation of sulfurous acid.			
		[1]			
(c)	Com	plete the following word equations.			
((i) I	magnesium hydroxide + dilute sulfuric acid			
		[1]			
(i	ii) :	zinc + dilute sulfuric acid			
		[1]			
(ii	ii) (copper carbonate + dilute sulfuric acid			
		[1]			

(d)) Wr	ite e	quations for the reaction of dilute sulfuric acid with each of the following.	
	(i)	am	monia	
				[2]
	(ii)	soc	lium hydroxide	
				[2]
	(iii)	iror	1	
Topic 1		em 8	Q# 77/ iGCSE Chemistry/2015/w/Paper 33/Q1 cribe a chemical test which shows the presence of water.	[2]
		test		
		colo	ur change if water is present	
				[3]
opic (g)		cribe	Q# 78/ iGCSE Chemistry/2015/w/Paper 32/Q6 how you could show that magnesium oxide is a basic oxide and not an amphoteri	c
			[2	2]
opic	(b)	em 8 The I	Q# 79/ iGCSE Chemistry/2015/s/Paper 33/Q4 burning of fossil fuels is largely responsible for the formation of acid rain. Two of the acid rain are sulfuric acid and nitric acid.	- -
		(iii)	Nitric acid contains nitrate ions.	
			Describe a test for nitrate ions.	
				[2]
	((iv)	Explain how you could determine which one of two samples of acid rain had the hig concentration of hydrogen ions.	gher
				[2]
				_

Topic Chem 8 Q# 80/ iGCSE Chemistry/2015/s/Paper 33/Q2

2 This question is concerned with the following oxides.

aluminium oxide carbon monoxide copper(II) oxide silicon(IV) oxide sodium oxide sulfur dioxide zinc oxide

Choose one oxide from the above list to match each of the following descriptions. An oxide may be used once, more than once or not at all. (d) This oxide is amphoteric. [1] Topic Chem 8 Q# 81/ iGCSE Chemistry/2015/s/Paper 32/Q5 Three common methods of preparing salts are shown below. method A adding an excess of an insoluble base or carbonate or metal to a dilute acid and removing excess by filtration method B using a burette and indicator method C mixing two solutions to obtain the salt by precipitation For each of the following salt preparations, choose a method, A, B or C. Name any additional reagent which is needed and complete the equation. (a) the soluble salt, nickel chloride, from the insoluble compound nickel carbonate method reagent word equation [3] (b) the insoluble salt, lead(II) bromide, from aqueous lead(II) nitrate method

reagent

ionic equation + → PbBr,

	met	hod
	rea	gent
	ean	ation
	equ	ation[4
opic C	Chem 8	Q# 82/ iGCSE Chemistry/2015/m/Paper 32/Q6
		t is told to produce the maximum amount of copper from a mixture of copper and carbonate.
with	h a gl	ent adds the mixture to an excess of dilute sulfuric acid in a beaker and stirs the mixture ass rod. The copper(Π) carbonate reacts with the sulfuric acid, forming a solution of) sulfate but the copper does not react with the sulfuric acid.
The	e stude	ent then
:		eves the unreacted copper from the mixture, erts the solution of copper(II) sulfate into copper by a series of reactions.
(a)		ribe two things that the student would observe when the mixture is added to the dilute ric acid.
		ופו
(c) The	student then adds sodium hydroxide solution to the copper(II) sulfate solution to product $\operatorname{per}(II)$ hydroxide.
	(i)	Describe what the student would observe.
	(i)	Describe what the student would observe.
	.,	
	.,	Write an ionic equation for this reaction.
opic C	(ii)	[1
3 Am	(ii) Chem 8 nmonia	Write an ionic equation for this reaction.
3 Am	(ii) Chem 8 nmonia a temp	Write an ionic equation for this reaction. [1] Q# 83/ iGCSE Chemistry/2015/m/Paper 32/Q3 is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalyst
3 Am	(ii) Chem 8 nmonia a temp	Write an ionic equation for this reaction. Q# 83/ iGCSE Chemistry/2015/m/Paper 32/Q3 is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalysterature of 450 °C and a pressure of 200 atmospheres.
3 Am at a	(ii) Chem 8 nmonia a temp e equa	Write an ionic equation for this reaction. [1] Q# 83/ iGCSE Chemistry/2015/m/Paper 32/Q3 Is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalyst erature of 450 °C and a pressure of 200 atmospheres.
3 Am at a	(ii) Chem 8 nmonia a temp e equa	Write an ionic equation for this reaction. [7] $Q\# 83/$ iGCSE Chemistry/2015/m/Paper 32/Q3 is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalyst erature of 450 °C and a pressure of 200 atmospheres. Ition for the reaction is as follows. $N_2 + 3H_2 \rightleftharpoons 2NH_3$
3 Am at a	(ii) Chem 8 nmonia a temp e equa	Write an ionic equation for this reaction.
3 Am at a The The (h) An	(ii) Chem 8 nmonia a temp e equa	Write an ionic equation for this reaction. Q# 83/ iGCSE Chemistry/2015/m/Paper 32/Q3 is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalyst erature of 450° C and a pressure of 200 atmospheres. Ition for the reaction is as follows. $N_2 + 3H_2 \rightleftharpoons 2NH_3$ and reaction is exothermic. In a acts as a base when it reacts with sulfuric acid.
3 Am at a The The (h) An	(ii) Chem 8 nmonia a temp e equa mmonia	Write an ionic equation for this reaction. Q# 83/ iGCSE Chemistry/2015/m/Paper 32/Q3 is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalyst erature of 450° C and a pressure of 200 atmospheres. Ition for the reaction is as follows. $N_2 + 3H_2 \rightleftharpoons 2NH_3$ and reaction is exothermic. a acts as a base when it reacts with sulfuric acid.

(c) the soluble salt, lithium sulfate, from the soluble base lithium hydroxide

Topic Ch	em 8 Q# 84/ iGCSE Chemistry/2015/m/Paper 32/Q1	
	each of the following, give the name of an element from Period 3 (sodium to argon), which hes the description.	:h
(c) a	element that forms a basic oxide of the type XO	
	[1]	
	an element that forms an amphoteric oxide	
		[1]
Topic Ch	em 8 Q# 85/ iGCSE Chemistry/2015/m/Paper 32/Q1	۲۰,1
	each of the following, give the name of an element from Period 3 (sodium to argon), whiches the description.	:h
Topic Ch	em 8 Q# 86/ iGCSE Chemistry/2014/w/Paper 33/Q8	
(b)	Complete the description of the preparation of crystals of the soluble salt, cobalt(chloride-6-water, $CoCl_2.6H_2O$, from the insoluble base, cobalt(II) carbonate.	II)
	$CoCO_3(s) + 2HCl(aq) \rightarrow CoCl_2(aq) + CO_2(g) + H_2O(l)$	
	50 cm ³ of dilute hydrochloric acid, concentration 2.2 mol/dm ³ , was heated and cobalt(II)
	carbonate was added in small amounts until	
		[/]
Tonic Ch		[+]
T I	em 8 Q# 87/ iGCSE Chemistry/2014/w/Paper 33/Q6 Sim and strontium are very reactive metals at the top of the reactivity series. Because the	ir
	have different charges, their compounds behave differently when heated.	***
(b)	Strontium carbonate is similar to calcium carbonate. It is insoluble in water and it decompose when heated. Rubidium carbonate is soluble in water and does not decompose when heater	
	(i) Describe a method to prepare a pure sample of the insoluble salt, strontium carbonate, precipitation.	by

Topic Chem 8 Q# 88/ iGCSE Chemistry/2014/w/Paper 32/Q6

(c) When a mixture of sulfur and potassium nitrate is burned and the products are dissolved in water, sulfuric acid is formed. The sulfuric acid formed by this method is not pure. It contains another acid. Deduce the identity of this acid. Topic Chem 8 Q# 89/ iGCSE Chemistry/2014/w/Paper 32/Q1 An important aspect of chemistry is purity and methods of purification. chromatography crystallisation diffusion dissolving evaporation filtration fractional distillation simple distillation (ii) Describe how you would obtain a pure sample of copper(II) sulfate-5-water crystals from a mixture of copper(II) sulfate-5-water with copper(II) oxide using some of the techniques listed above. Topic Chem 8 Q# 90/ iGCSE Chemistry/2014/s/Paper 32/Q7 The soluble salt hydrated lithium sulfate is made by titration from the soluble base lithium hydroxide. burette filled with sulfuric acid conical flask aqueous lithium hydroxide and a few drops of a pH indicator (a) The sulfuric acid is added slowly from the burette until the indicator just changes colour. The volume of sulfuric acid needed to just neutralise the lithium hydroxide is noted. Describe how you would continue the experiment to obtain pure dry crystals of hydrated lithium sulfate.

ic Chem 8 Q# 91/ iGCSE Chemistry/2014/s/			
 Scandium oxide is insoluble in water. oxide. 	Describe how you	could show	that it is an amphoteric
			[3]
Oic Chem 9 Q# 92/ iGCSE Chemistry, A reactivity series of metals is given be	/2015/w/Paper 33/C		
	metal name	symbol	
most	sodium	Na	
most reactive	lithium	Li	
	magnesium	Mg	
	zinc	Zn	
	manganese	Mn	
	iron	Fe	
least reactive	copper	Cu	
	rhodium	Rh	
(a) Which two metals will react most with the most will react most with the metals will react most with the most will react most will react most with the most will react most with the most will react most will react most with the most will react most will react most will react most with the most will react			
Predict three physical and two chemi		his metal.	
physical properties			
		••••	
chemical properties			

Topic Chem 9 **Q# 93/** iGCSE Chemistry/2015/w/Paper 33/Q2

2 Choose from the following list of gases. A gas may be chosen once, more than once or not at all.

	sulfur dioxide	hydrogen	methane	carbon monoxide	
(d)	argon It is used to provid	ethene e an inert atmospher	butane e for welding		[1]
Topic Ch	em 9 Q# 94/ iGCSE Ch	emistry/2015/m/Paper 3	32/Q1		
	each of the following thes the description.	, give the name of ar	element from P	eriod 3 (sodium to argon), which	l
(d)	an element used as a	an inert atmosphere in	lamps		
				[1]	ı
(f)		cts vigorously with col			ı
				[1]
		emistry/2014/w/Paper 3 ne and potassium is ar		ctor of electricity	
				d out of contact with air. There ar	e
8	substances in u	npolluted air which wi	I react with potas	sium.	
	Name two pota air.	ssium compounds wh	ich could be form	ned when potassium is exposed t	0
				[2	2]
Topic Ch		emistry/2014/w/Paper 3			
1 For e	each of the following	elements give one ph	ysical property ar	nd one chemical property.	
(a)	bromine (Br ₂)				
	physical property				
	chemical property				
(c)	manganese (Mn)			[2]	l
	physical property				
	chemical property				
Tauria Ch	0 0# 07/ :cccr ch		2/04	[2	2]
1 Choo				ow. Each gas may be used once,	ı
	ammonia	carbon dioxide	carbon monoxi	de fluorine	
	hydrogen	krypton nitroge	n propene	sulfur dioxide	
(c) It	is a noble gas			[1]	
(e) l	t is a very reactive no	n-metal		[1]	

Topic Chem 9 Q# 98/ iGCSE Chemistry/2014/s/Paper 32/Q6

Scandium, proton number 21, is not a typical transition element.

(a)	Scandium is a low density metal which has only one oxidation state in its compounds. Scandium
	compounds are white collide which form colourless colutions. Titanium, the next metal in the

compounds are white solids which form colourless solutions. Titanium, the next metal in the period, is a far more typical transition element. How would the properties of titanium differ fron those of scandium?	
[3	

Topic Chem 9 **Q# 99/** iGCSE Chemistry/2014/s/Paper 32/Q1

1 The table below gives the electron distributions of atoms of different elements.

element	electron distribution
Α	2 + 7
В	2 + 8 + 4
С	2+8+8+1
D	2 + 8 + 18 + 5
E	2+8+18+7
F	2+8+18+18+8

For each of the following, select an element or elements from the table that matches the description. Each element may be selected once, more than once or not at all.

Lac	in element may be selected once, more than once of not at all.	
(a)	These two elements are in the same group.	
		[1]
(c)	This element reacts violently with cold water.	
		[1]
(f)	This element is bromine.	
		[1]

6 A reactivity series of metals is given below.

	metal name	symbol
most	sodium	Na
reactive	lithium	Li
1	magnesium	Mg
	zinc	Zn
	manganese	Mn
*	iron	Fe
least reactive	copper	Cu
reactive	rhodium	Rh

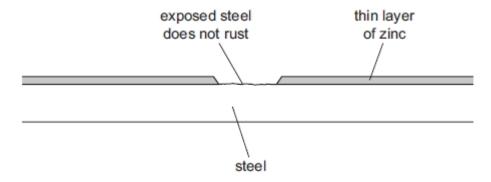
(b) Which two metals will not react with dilute hydrochloric acid?

	(e)				ich will show that manganese is more reactive than co			
Topic	Che	em 10	Q# 101/	iGCSE Chemistry/2015/v	w/Paper 32/Q5			. [၁]

5 Iron is extracted from its ore, hematite, in a blast furnace.

Substances added to the furnace are:

- iron ore, hematite, containing impurities such as silica, SiO₂
- air
- coke, C
- limestone, CaCO₃


Substances formed in the blast furnace are:

- molten iron
- molten slag
- waste gases such as carbon dioxide
- (a) State the two functions of the coke used in the blast furnace.
- (b) Write an equation for the conversion of hematite, Fe₂O₃, to iron.

[2]

(c)	Explain how the silica impurity is removed and separated from the molten iron.
	[3]
(d)	The molten iron from the furnace is impure. It contains impurities which include the element carbon.
	Explain how the carbon is removed. Include an equation in your answer.
opic Ch	Total: 10 nem 10
3 Tw	o of the main uses of zinc are for galvanising and for making alloys.
this	e of the main ores of zinc is zinc blende, ZnS. There are two stages in the extraction of zinc from sore.
(a)	Stage 1 Zinc oxide is made from zinc blende. Describe how this is done and write a word equation for the reaction.
(b)	Stage 2 Zinc oxide is reduced to zinc.
	Write a word equation for the reduction of zinc oxide by coke.
d) Bras	ss is an alloy which contains zinc.
(i)	Name the other metal in brass.
	Suggest two reasons why an alloy such as brass is preferred to either of its constituent metals.
	[2]

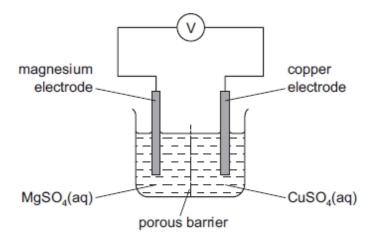
- (e) In an experiment to investigate the rate of rusting of steel, three pieces of steel were used. One piece of steel was completely coated with copper, one piece completely coated with zinc and the third piece was left uncoated. All three pieces were left exposed to the atmosphere.
 - (ii) The coating on both of the other two pieces was scratched, exposing the steel.

The piece of steel coated with zinc still did not rust but the copper-coated piece of steel rusted very rapidly.

em 10 Q# 103/ iGCSE Chemistry/2015/w/Paper 32/Q3	[4
	[A
Explain these observations in terms of the formation of ions and the transfe	er of electrons

Topic Chem 10 Q# 103/ iGCSE Chemistry/2015/w/Paper 32/Q3
 (e) In an experiment to investigate the rate of rusting of steel, three pieces of steel were used. One piece of steel was completely coated with copper, one piece completely coated with zinc and the third piece was left uncoated. All three pieces were left exposed to the atmosphere.

	(i) E	xplain w	ny the uncoa	ted piece started to rust.
	78			
				[
Topic	Chem	10	Q# 104/	iGCSE Chemistry/2015/s/Paper 33/Q6


- 6 Chemical reactions are always accompanied by an energy change.
 - (a) Aluminium is extracted by the electrolysis of a molten mixture which contains aluminium oxide, Al₂O₃. This decomposes to form aluminium at the negative electrode and oxygen at the positive electrode.
 - (i) Write an ionic equation for the reaction at the negative electrode.
 - (ii) Complete the ionic equation for the reaction at the positive electrode.

(iii)	Is the reaction exothermic or endothermic? Explain your answer.
	[1]

(b) The cell shown below can be used to determine the order of reactivity of metals.

(i) Is the reaction in the cell exothermic or endothermic? Explain your answer.
(ii)	Explain why the mass of the magnesium electrode decreases and the mass of the copper electrode increases.
(iii)	How could you use this cell to determine which is the more reactive metal, magnesium or manganese?

Topic Chem 10 **Q# 105/** iGCSE Chemistry/2015/s/Paper 33/Q5

5 The law of constant composition states that all pure samples of a compound contain the same elements in the same proportion by weight.

A typical experiment to test this law is to prepare the same compound by different methods and then show that the samples have the same composition.

Methods of making copper(II) oxide include:

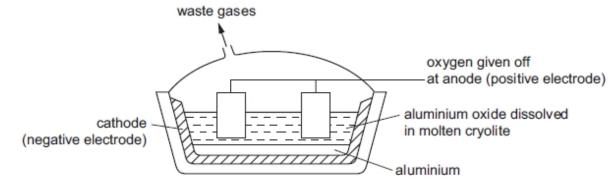
- heating copper carbonate,
- heating copper hydroxide,
- heating copper nitrate,
- heating copper foil in air.
- (a) Complete the following equations.

	(ii)	Cu(OH) ₂ → +	[1]
	(iii)	$2Cu(NO_3)_2 \rightarrow \dots + 4NO_2 + \dots$	[2
	(b) Co	opper oxide can be reduced to copper by heating in hydrogen.	
	(i)	What colour change would you observe during the reduction?	
	(ii)	Explain why the copper must be allowed to cool in hydrogen before it is exposed to air	r.
	(iii)	Name another gas which can reduce copper(II) oxide to copper.	[2]
	(iv)	Name a solid which can reduce copper(II) oxide to copper.	[1]
opic (I		10 Q# 106/ iGCSE Chemistry/2015/s/Paper 32/Q6 nitrates decompose when heated. The extent to which a nitrate decomposes is ermined by the metal in the salt.	[1]
	(i)	Sodium nitrate decomposes to form sodium nitrite, $NaNO_2$.	
		Write the equation for decomposition of sodium nitrate.	
	(iii)	Copper(II) nitrate decomposes to form copper(II) oxide, nitrogen dioxide and oxygen.	[2]
		What is the relationship between the extent of decomposition and the reactivity of the metal in the nitrate?	
(c)	The eq	guation for the decomposition of copper(Π) nitrate is given below.	[1]
		$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$	
	(i) Pre	edict what you would observe when $copper(II)$ nitrate is heated.	
		[3]	

Topic Chem 10 Q# 107/ iGCSE Chemistry/2015/m/Paper 32/Q6

6 A student is told to produce the maximum amount of copper from a mixture of copper and copper(II) carbonate.

The student adds the mixture to an excess of dilute sulfuric acid in a beaker and stirs the mixture with a glass rod. The copper(II) carbonate reacts with the sulfuric acid, forming a solution of copper(II) sulfate but the copper does not react with the sulfuric acid.


The student then

- removes the unreacted copper from the mixture,
- converts the solution of copper(II) sulfate into copper by a series of reactions.
- (d) After separating the copper(II) hydroxide from the mixture, the copper(II) hydroxide is heated strongly. The copper(II) hydroxide decomposes into copper(II) oxide and steam.

	(i)	Write an equation f	or the decomposition of copper(Π) hydroxide. Include state symbols.
			[2]
	(ii)	Name a non-metal	ic element that can be used to convert copper(II) oxide into copper.
			[1]
Topic	Chem 1	0 Q# 108/	iGCSE Chemistry/2015/m/Paper 32/Q5
5	Aluminiu	m and iron are extra	cted from their area by different methods

5 Aluminium and iron are extracted from their ores by different methods.

Aluminium is extracted from its purified oxide ore by electrolysis.

(a)	What is the name of the ore of aluminium which consists mainly of aluminium oxide?	
		[1]
(b)	The electrodes are both made of the same substance.	
	Name this substance.	

(c) Aluminium oxide is dissolved in molten cryolite before it is electrolysed.

Give **two** reasons why aluminium oxide dissolved in molten cryolite is electrolysed rather than molten aluminium oxide alone.

	(-1)		
	(a)	Write the ionic equations for the reactions at the electrodes in this electrolysis.	
		anode (positive electrode)	
		cathode (negative electrode)	
			[2]
(e)	Iror	n is extracted from its oxide ore by reduction using carbon in a blast furnace.	
		waste gases	
		raw materials:	
		coke, iron ore,	
		limestone.	
		//	
		air ————————————————————————————————————	
		slag	
		molten iron	
	(i)	Place the elements aluminium, carbon and iron in order of reactivity with the least reactive	:
		element first.	
		[1]	
	(ii)	Use your answer to (e)(i) to explain why iron is extracted by reduction using carbon but aluminium is not.	t
		[1]	
f)	Wh	nat is the name of the ore of iron which consists mainly of iron(III) oxide?	
-,			ı
		[1]	
g)	Wri	ite balanced equations for the reactions occurring in the blast furnace which involve	
	(i)	the complete combustion of coke (carbon),	
	(-)		ı
	/::\	[1]	
	(ii)	the production of carbon monoxide from carbon dioxide,	
		[1]	l
	(iii)	the reduction of iron(III) oxide,	
		[1]	
	(iv)	the formation of slag.	
		F41	Page 1

Topic Chem 10 **Q# 109/**

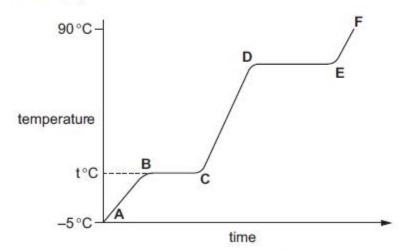
iGCSE Chemistry/2014/w/Paper 33/Q6

- 6 Rubidium and strontium are very reactive metals at the top of the reactivity series. Because their ions have different charges, their compounds behave differently when heated.
 - (ii) Complete the equation for the decomposition of strontium carbonate.

- (c) Metal nitrates decompose when heated.
 - (i) Rubidium nitrate decomposes as follows:

What is the name of the compound RbNO₂?

(ii) The nitrates of most other metals decompose in a different way. Complete the equation for the decomposition of strontium nitrate.


......
$$Sr(NO_3)_2 \rightarrow + 4NO_2 +$$
[2]

Topic Chem 10 **Q# 110/** iGCSE Chemistry/2014/w/Paper 33/Q2

represented on the graph.

Compound X is a colourless liquid at room temperature.

(a) A sample of pure X was slowly heated from -5.0 °C, which is below its melting point, to 90 °C, which is above its boiling point. Its temperature is measured every minute and the results are

(iv) What would be the difference in the region BC if an impure sample of X had been used?

.....[1]

chemical property

Topic Chem 10 **Q# 111/** iGCSE Chemistry/2014/w/Paper 33/Q1

- 1 For each of the following elements give one chemical property.
 - (b) carbon_{graphite}(C)

Topic Chem 10 **Q# 112/** iGCSE Chemistry/2014/w/Paper 32/Q6

Sulfuric acid is an important acid, both in the laboratory and in industry.

Sulfuric acid is manufactured in the Contact Process. Originally, it was made by heating metal sulfates and by burning a mixture of sulfur and potassium nitrate.

[1]

(ii) The heat causes some of the potassium nitrate to decompose. Write the equation for the action of heat on potassium nitrate.

	[2]	

Topic Chem 10 **Q# 113/** iGCSE Chemistry/2014/w/Paper 32/Q4

- 4 Zinc is an important metal. Its uses include making alloys and the construction of dry cells (batteries).
 - (a) Name an alloy which contains zinc. What is the other metal in this alloy?

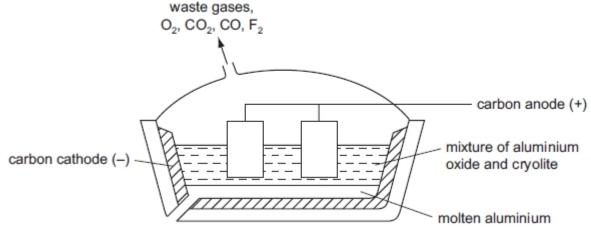
name of alloy	
other metal in	alloy

- (b) The main ore of zinc is zinc blende, ZnS.
 - (i) The ore is heated in the presence of air to form zinc oxide and sulfur dioxide. Write the equation for this reaction.

10 **Q# 114/** iGCSE Chemistry/2014/w/Paper 32/Q2

Topic Chem 10 Q# 114/ iGCSE Chemistry/2014/w/Paper 32/Q2

2 Aluminium is obtained by the reduction of aluminium ions to aluminium atoms.


(a) Write an ionic equation for the reduction of an aluminium ion to an aluminium atom.

.....[2]

- (b) The original method of extracting aluminium involved the reduction of aluminium chloride using the reactive metal sodium. Aluminium obtained by this method was very expensive due to the high cost of extracting sodium from sodium chloride.
 - (i) Complete the equation for this reduction.

$$AlCl_3 + \dots Na \rightarrow \dots + \dots$$
 [2]

(c) In the modern method, aluminium is obtained by the electrolysis of aluminium oxide (alumina) dissolved in molten cryolite, Na₃A1F₆.

(1)	What is the name of this ore?	[1]
(ii)		ich is
		[2]
(iii)	Give two reasons why the electrolyte contains cryolite.	
		[2]
(iv)	The mixture of gases evolved at the positive electrode includes:	
	carbon dioxide	
	carbon monoxide	
	fluorine oxygen	
	Explain the presence of these gases in the gaseous mixture formed at the pos electrode. Include at least one equation in your explanation.	
		[5]
	najor use of aluminium is the manufacture of pots and pans. One reason for this is stance to corrosion.	s its
(i)	Explain why aluminium, a reactive metal, is resistant to corrosion.	
(ii)	Suggest two other reasons why aluminium is suitable for making pots and pans.	[1]
		[2]

opic Cne	m 10 Q# 115/ IGCSE Chemistry/2014/s/Paper 33/Q/	
7 Alum	inium is obtained from purified alumina, ${\rm A}l_{\rm 2}{\rm O}_{\rm 3}$, by electrolysis.	
	Alumina is obtained from the main ore of aluminium. State the name of this ore.	
		[1]
(c)	Aluminium is resistant to corrosion. It is protected by an oxide layer on its surface. The thickness of this oxide layer can be increased by anodising.	
	(i) State a use of aluminium due to its resistance to corrosion.	
		[1]
Iron fro Most o	m 10 Q# 116/ iGCSE Chemistry/2014/s/Paper 33/Q4 om a blast furnace contains about 5% of the impurities – carbon, silicon, phosphorus and if this impure iron is used to make steels, such as mild steel, and a very small percer or make pure iron.	
***************************************	alcium oxide and oxygen are used to remove the impurities from the iron produced ast furnace.	in the
(ii)	Describe how these two chemicals remove the four impurities. Include at least one equin your answer.	uation
(iii)	Mild steel is an alloy of iron and carbon. Suggest why mild steel is harder than pure iron.	[5]
	Suggest wity filled steer is flatder than pure from.	
- :- : - Cl-		[2]
opic Ch (c) [em 11 Q# 117/ iGCSE Chemistry/2015/w/Paper 33/Q1 Describe how water is treated before it is supplied to homes and industry.	
		•••••
		[2]
(d) S	state two industrial uses of water.	_
(-7		&
		[2]

e of these	Chem 11 Q# 118/ iG (a) Polluted air contains two oxi pollutants is motor vehicles.	(a) Poll	Topic 2		
engines.	(i) Describe how carbon di	(i)			
[3]	(ii) State one adverse effec	(ii)			
[2]		(11)			
[2]	(iii) Nitrogen monoxide, NO	(iii)			
	Explain how nitrogen m				
[2]					
is formed.	(iv) When nitrogen monoxid Suggest an explanation	(iv)			
[1]					
O ₂ , reacts	(b) Predict the possible adverse with water and oxygen.				
[2]					
ern motor	(c) How are the amounts of ca vehicles reduced? Include a				
i:	(iv) When nitrogen monoxides Suggest an explanation (b) Predict the possible adverse with water and oxygen.	(b) Pred with			

Topic		Q# 119/ iGCSE Chemistry/2015/s/Paper 33/Q4 burning of fossil fuels is largely responsible for the formation of acid rain. Two of the acids acid rain are sulfuric acid and nitric acid.					
	(i)	Explain how the combustion of coal can form sulfuric acid.					
		[3					
	(ii)	High temperatures generated by the combustion of fossil fuels can lead to the formation of nitric acid. Explain.					
		[3]				
Topic	Chem						
7	Alcoho	Is can be made by fermentation or from petroleum.					
	(a) Etl	nanol can be made by the fermentation of glucose.					
		$C_6H_{12}O_6(aq) \xrightarrow{yeast} 2C_2H_5OH(aq) + 2CO_2(g)$ exothermic reaction					
		ast are living single-cell fungi which ferment glucose by anaerobic respiration. This action is catalysed by enzymes from the yeast.					
	(i)	What is meant by the term respiration?					
			40				
		[3	1				
	(ii)	5 TOTAL AND THE RESIDENCE OF ANY STATE OF THE STATE OF TH					
		Name the products formed from respiration in the presence of oxygen.					
		[1]					
Topic	Chem						
6	salt wer	cama desert in Chile has deposits of the salt sodium nitrate. Very large amounts of this e exported to Europe for use as a fertiliser. After the introduction of the Haber process in his trade rapidly diminished.					
	(a) (i)	Explain why the introduction of the Haber process reduced the demand for sodium nitrate.					

	9	(ii)	 Suggest why surface deposits of sodium nitrate only occur in areas with very low ra such as desert areas. 				
	(iii)	The desert has smaller surface deposits of potassium nitrate.	[1]			
			Suggest why potassium nitrate is a better fertiliser than the sodium salt.	***			
opic		em 1 noni	.1 Q# 122/ iGCSE Chemistry/2015/s/Paper 32/Q4 a is made by the Haber process.	[1]			
			$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$				
	The	forw	vard reaction is exothermic.				
	Турі	ical r	reaction conditions are:				
			finely divided iron catalyst, temperature 450 °C, pressure 200 atmospheres.				
	(a)	Ехр	lain why the catalyst is used as a very fine powder and larger pieces of iron are not us	ed.			
				[2]			
	(b)	Usir	ng the above conditions, the equilibrium mixture contains about 15% ammonia.				
			te two changes to the reaction conditions which would increase the percentage of monia at equilibrium.				
				[2]			
	(c)	Sug	gest why the changes you have described in (b) are not used in practice.				

Topic Chem 11 Q# 123/ iGCSE Chemistry/2015/m/Paper 32/Q3

3 Ammonia is manufactured by the Haber process. Nitrogen and hydrogen are passed over a catalyst at a temperature of 450 °C and a pressure of 200 atmospheres.

The equation for the reaction is as follows.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

The forward reaction is exothermic.

(=)	Oto	to analysis of ammonia	
(a)		te one use of ammonia.	1]
(b)	Wha	at is the meaning of the symbol ⇌?	1]
(c)		at are the sources of nitrogen and hydrogen used in the Haber process?	
		rogen	
(d)	Nar	ne the catalyst in the Haber process.	
(e)	(i)	If a temperature higher than 450 °C was used in the Haber process, what would happen the rate of the reaction? Give a reason for your answer.	
	(ii)	If a temperature higher than 450 °C was used in the Haber process, what would happen the yield of ammonia? Give a reason for your answer.	Ī
(i)		pressure higher than 200 atmospheres was used in the Haber process, what would open to the yield of ammonia? Give a reason for your answer.	2]

(f)

(11)	200 atmospheres.	of reaction would be faster if the pressure was greater than
(iii		why a pressure higher than 200 atmospheres is not used in the
Горіс		iGCSE Chemistry/2015/m/Paper 32/Q1
ma	atches the description. an element that is adde	
0028 03		iGCSE Chemistry/2014/s/Paper 33/Q5 aber process.
ī		on chamber are: atmospheres, divided iron,
		[4]
(I	Why is a higher temperature w	vould give a faster reaction rate. rature not used?
		[3]

(c) (i)	Why is the iron catalyst used as a fine powder?
(ii)	Give two reasons why a catalyst is used.
	[2]
Most of th	11 Q# 126/ iGCSE Chemistry/2014/s/Paper 33/Q4 a blast furnace contains about 5% of the impurities – carbon, silicon, phosphorus and sulfur. his impure iron is used to make steels, such as mild steel, and a very small percentage is make pure iron.
700000 20000000000000000000000000000000	ium oxide and oxygen are used to remove the impurities from the iron produced in the turnace.
(i) :	State how these chemicals are manufactured. oxygen
	[2]
	11 Q# 127/ iGCSE Chemistry/2014/s/Paper 33/Q1 a gas from the following list to answer the questions below. Each gas may be used once, an once or not at all.
	ammonia carbon dioxide carbon monoxide fluorine
(a) It is	hydrogen krypton nitrogen propene sulfur dioxide s a product of respiration. [1]
	11 Q# 128/ iGCSE Chemistry/2014/s/Paper 33/Q1 a gas from the following list to answer the questions below. Each gas may be used once, an once or not at all.
	ammonia carbon dioxide carbon monoxide fluorine
Topic Chem 1	hydrogen krypton nitrogen propene sulfur dioxide ne main component of air. [1] 11 Q# 129/ iGCSE Chemistry/2014/s/Paper 32/Q5 nyl chloride is made from carbon monoxide and chlorine.
	$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$
	o methods of preparing carbon monoxide are from methane and oxygen, and from methane d steam.
(i)	The reaction between methane and oxygen can also form carbon dioxide. How can carbon monoxide be made instead of carbon dioxide?

Topic 3	Pla		Q# 130/ iGCSE Chemistry/2014/s/Paper 32/Q3 owth is improved by the availability of essential elements, such as nitrogen, and by the soil a suitable pH.						
	(a)		ogen- cess.	based fertilise	ers are made from	ammonia. Ammo	onia is manufactured by the Ha	iber	
		(i)			er process giving re action rate and yiel		and a balanced equation.		

								[5]	
		(ii)		lisers contain e the other tw	nitrogen.		th commonly found in fertilisers.		
	(b) C		Crops do not grow well if the soil is too acidic.						
		(i)	One	cause of acid	ity in soil is acid rai	n. Explain how a	cid rain is formed.		
								[3]	
Topic 2 (a) N		al gas	-	inly methane, is a f		Q2b ad use of fossil fuels?		
Topic	c Ch	em	12		iGCSE Chemistry,			[2]	
2	Choo	ose f	rom t	he following l	ist of gases. A gas	may be chosen	once, more than once or not a	t all.	
		\$	sulfui	dioxide	hydrogen	methane	carbon monoxide		
	(a)	It is		r <mark>gon</mark> to bleach wo	ethene ood pulp	butane		[1]	

Topic Chem 12 Q# 133/ iGCSE Chemistry/2015/s/Paper 33/Q2

This question is concerned with the following oxides.

aluminium oxide carbon monoxide copper(II) oxide silicon(IV) oxide sodium oxide sulfur dioxide zinc oxide

Choose one oxide from the above list to match each of the following descriptions. An oxide may be used once, more than once or not at all. (c) This oxide is used as a bleach. [1] Topic Chem 12 iGCSE Chemistry/2014/w/Paper 32/Q6 Q# 134/ Sulfuric acid is an important acid, both in the laboratory and in industry. Sulfuric acid is manufactured in the Contact Process. Originally, it was made by heating metal sulfates and by burning a mixture of sulfur and potassium nitrate. (a) Give a major use of sulfuric acid.[1] (ii) When the iron(II) sulfate is heated strongly, further decomposition occurs. $2FeSO_4(s) \rightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$ The gases formed in this reaction react with water and oxygen to form sulfuric acid. Explain how the sulfuric acid is formed.[2] Topic Chem 12 Q# 135/ iGCSE Chemistry/2014/w/Paper 32/Q4 Give a major use of sulfur dioxide.[1] Topic Chem 12 iGCSE Chemistry/2014/s/Paper 33/Q1 Q# 136/ Choose a gas from the following list to answer the guestions below. Each gas may be used once, more than once or not at all. carbon dioxide ammonia carbon monoxide fluorine

hydrogen krypton propene sulfur dioxide nitrogen

(f) It is used to kill micro-organisms in fruit juice. [1]

Topic Chem 13 Q# 137/ iGCSE Chemistry/2015/s/Paper 33/Q3

3 Quicklime, which is calcium oxide, is made by heating limestone in a furnace.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

The reaction does not come to equilibrium.

	(b)	Cal	cium hydroxide, slaked lime, is made from calcium oxide.
		Wri	te an equation for this reaction.
			[2]
	(c)		culate the maximum mass of calcium oxide which could be made from 12.5 tonnes of cium carbonate. 1 tonne = 1×10^6 g.
			[2]
	(d)		estone is used in agriculture to reduce the acidity of soil and for the desulfurisation of flue ses in power stations.
		(i)	Most crops thrive in soils whose pH is close to 7. Calcium carbonate, which is insoluble in water, and calcium oxide, which is slightly soluble in water, are both used to reduce the acidity of soils.
			Suggest two advantages of using calcium carbonate for this purpose.
			1
			2
		(ii)	Explain the chemistry of desulfurisation of flue gases.
		10020	[3]
		(iii)	Give one other use of calcium carbonate.
Topic 4	Iron Mos	st of	
	(a)		cium oxide and oxygen are used to remove the impurities from the iron produced in the st furnace.
		(i)	State how these chemicals are manufactured.
			calcium oxide

•	nem 13		IGCSE Chemistry/2014/		
		th is improved by the itable pH.	availability of essenti	al elements, such as nitrogen, a	nd by the soil
(b)	Crops	do not grow well if the	e soil is too acidic.		
	(ii) N	lame two bases which	h are used to increas	se the pH of acidic soils.	
					[2]
opic C	hem 1		iGCSE Chemistry/2015/		
Two	homolo	ogous series of hydro	ocarbons are the alk	anes and the alkenes.	
(a)		e general characteri edictable way.	stic of a homologous	s series is that the physical prop	perties vary in a
	Sta	ate three other gene	ral characteristics of	a homologous series.	
					[3]
(w can the molecula ene?	r formula of a hydr	ocarbon show whether it is a	n alkane or an
					[2]
(iii) Ho	w do alkanes and al	kenes differ in their	molecular structures?	
					[2]
	acking drogen.	is the thermal deco		s into smaller hydrocarbons a	
(i)	State	two conditions requ	ired for the cracking	of an alkane.	
					[2]
(ii)	One t	ype of cracking prod	uces an alkane and	an alkene.	
	Comp	lete an equation for	the cracking of hept	ane into an alkane and an alke	ene.
		C ₇ H ₁	, → +		[1]
(iii)	Comp	lete an equation for	the cracking of hept	ane into hydrogen and two oth	er products.
		C ₇ H ₁₆ -	· +	+ H ₂	[1]
(iv)	Sugge	est one reason why	cracking is importan	t.	-
					[1]

Topic Chem 14 **Q# 141/** iGCSE Chemistry/2015/w/Paper 33/Q2

2 Choose from the following list of gases. A gas may be chosen once, more than once or not at all.

		s	ulfur dioxide	hydrogen	methane	carbon monoxide
			argon	ethene	butane	
	(c)	It car	n polymerise			[1]
	(f)) It is	produced by the d	ecay of vegetation	n in the absence	of oxygen[1]
Topic	Cl	hem 14	Q# 142/	iGCSE Chemistry	v/2015/w/Paper 32/	Q4
4	(a)	Propa react		lorine to form a	mixture of chloro	propanes. This is a photochemical
		10000	The products of this ormula.	reaction include	two isomers, one	of which has the following structural

Draw the structural formula of the other isomer.

	[1]
(iii) Explain why these two different compounds are isomers.	
	[2]
Chloropropane can be hydrolysed to propanol, CH ₃ CH ₂ CH ₂ OH, by sodium hydroxide.	1
Write the equation for this reaction.	
	[2]
Propanol can be dehydrated. It loses a water molecule to form a hydrocarbon.	
Give the name and structural formula of this hydrocarbon.	
name	
structural formula	[2]
	Chloropropane can be hydrolysed to propanol, CH ₃ CH ₂ CH ₂ OH, by sodium hydroxide. Write the equation for this reaction. Propanol can be dehydrated. It loses a water molecule to form a hydrocarbon. Give the name and structural formula of this hydrocarbon. name

(iii) Propanol is oxidised to a carboxylic acid by acidified potassium manganate(VII).

Deduce the name of this acid.

[1]

Topic Chem 14 Q# 143/ iGCSE Chemistry/2015/s/Paper 33/Q7

7 (a) Alkanes and alkenes are both hydrocarbons.

(i) How does the structure of alkenes differ from the structure of alkanes?

[1]

(ii) Is the straight-chain hydrocarbon C₂₂H₄₄ an alkane or an alkene? Explain your choice.

[2]

(iii) Describe how you could distinguish between pentane and pentene.

test

result with pentane

- (b) Alkenes polymerise to form poly(alkenes).
 - (i) The alkene 1,1-dichloroethene has the structural formula given below.

Draw the structural formula of the polymer formed by the polymerisation of 1,1-dichloroethene.

result with pentene

[3]

[3]

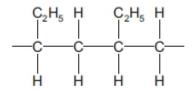
(ii) The structural formula of a different polymer is given below.

Deduce the structural formula of the monomer used to form this polymer.

				[2]
(iii)	There	are two types of poly	merisation - addition and condensation.	
	Explai	n the difference betwe	een them.	
				[2]
(iv)		are two types of cond	and the substitution of the second of the substitution of the subs	
	Give th	ne name of one type	of condensation polymer.	
				741
	0.00000000			87. 87. 87. 87. 87. 87. 87. 87. 97. 97. 97. 97. 97. 97. 97. 97. 97. 9
Горіс	Chem 14	0# 144/	iGCSE Chemistry/2015/s/Paper 33/Q6	[Total: 14]
•		nbustion of propane,		
	Give an	equation for the com	plete combustion of propane.	
				[2]
Горіс 4	Chem 14 (a) (i)	Q# 145/ Coal is a solid fossil	iGCSE Chemistry/2015/s/Paper 33/Q4 fuel.	
		Name another fossil	fuel.	
				[1]
	(ii)	Explain what is mea	nt by the term fossil fuel.	
				[21
				[2]

opic		14 Q# 146/ e of ethanol is in alcoh		
, ,		o other uses of ethan		[2]
(d)	Alcohols	s can be made from p	etroleum by the following sequence of reactions.	. [-]
		alkanes fro	om petroleum → alkene → alcohol	
		e the manufacture of on and type of reaction	ethanol from hexane, C_6H_{14} . Include in your description an for each step.	
opic	Chem 1		iGCSE Chemistry/2015/m/Paper 32/Q7	. [5]
7	Ethanoli	s manufactured from g	plucose, C ₆ H ₁₂ O ₆ , by fermentation according to the following e	quation.
			$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	
	(a) State	e the conditions requi	red for this reaction.	
				[2]
	(c) Eth	anol can also be man	ufactured from ethene.	
	(i)	Name the raw mater	rial which is the source of ethene.	
	(ii)	Write a balanced eq	uation for the manufacture of ethanol from ethene.	[1]
	(,	1		[1]
opic	Chem 1		iGCSE Chemistry/2015/m/Paper 32/Q4	[1]
4	(a) A co	mpound X contains 8	32.76% of carbon by mass and 17.24% of hydrogen by mass	S.
	(i)	Calculate the empiric	al formula of compound X	

[2]



(ii) Compound X has a relative molecular mass of 58.

Deduce the molecular formula of compound X.

				[2]
	(b)	Alke	enes are unsaturated hydrocarbons.	
		(i)	State the general formula of alkenes.	
				[1]
		(ii)	State the empirical formula of alkenes.	
				[1]
	(c)	Wh	at is meant by the term unsaturated hydrocarbon?	
		uns	aturated	
		hyd	rocarbon	
				[2]
(d)	De	escrit	be a test that would distinguish between saturated and unsaturated hydrocarbons.	
	rea	agen	t	
	ob	serv	ation (saturated hydrocarbon)	
	oh	serv	ation (unsaturated hydrocarbon)	

(e) Addition polymers can be made from alkenes. The diagram shows part of an addition polymer.

Draw a circle on the diagram to show one repeat unit in this polymer.

[3]

[1]

	(ii)	Giv	ve the structure and the name of the monomer used to make this polymer.	
		str	ucture	
		na	me	[2]
	(iii)	Giv	ve the structure of an isomer of the alkene in (e)(ii).	
Topic 4			14 Q# 149/ iGCSE Chemistry/2015/m/Paper 32/Q4 ompound X contains 82.76% of carbon by mass and 17.24% of hydrogen by mass. Calculate the empirical formula of compound X .	[1]
		(ii)	Compound X has a relative molecular mass of 58. Deduce the molecular formula of compound X .	[2]
				[2]
	(b)	Alke	enes are unsaturated hydrocarbons.	
		(i)	State the general formula of alkenes.	
		(ii)	State the empirical formula of alkenes.	[1]
				[1]

(c)	What is	meant by	the	term	unsaturated	hydrocarbon?
-----	---------	----------	-----	------	-------------	--------------

unsaturated	
hydrocarbon	
,	

(d) Describe a test that would distinguish between saturated and unsaturated hydrocarbons.

(e) Addition polymers can be made from alkenes. The diagram shows part of an addition polymer.

- (i) Draw a circle on the diagram to show one repeat unit in this polymer. [1]
- (ii) Give the structure and the name of the monomer used to make this polymer. structure

(iii) Give the structure of an isomer of the alkene in (e)(ii).

[1]
[Total: 15]

SMASHING 11

[2]

Tonic	Chem 14	Q# 150	iGCSE Chemistry/2014/w/Paper 33/Q
1 Opic	CHEIH 14	Qm IJU	y ideal chemistry/2014/w/raper 33/Q

7	Butane is oxidised to a mixture of carboxylic acids by oxygen in the presence of a catalyst.
	The acids formed are methanoic acid, ethanoic acid and propanoic acid – the first three members
	of the carboxylic acid homologous series.

(a) (i)	Give the name and structural formula of the fourth member of this series.
	name
	structural formula showing all the atoms and bonds
***	[3]
(11)	State three characteristics of a homologous series.
	ro1
Control of the control of	rboxylic acids react with alcohols to form esters. Ethanol reacts with ethanoic acid to form ester ethyl ethanoate, CH ₃ COOCH ₂ CH ₃ .
(i)	Give the name and formula of the ester which is formed from methanol and propanoic acid.
	name
	formula[2]
(ii)	What is the name of the ester which has the formula CH ₃ COOCH ₃ ?
()	[1]
c) (i) C	omplete the equation for the oxidation of butane to propanoic acid.
	$3C_4H_{10} + \dots O_2 \rightarrow 4C_2H_5COOH + \dots H_2O$
	[1]
(ii) N	ame another compound which can be oxidised to propanoic acid.
	[1]

5 (a) Glucose, sucrose and starch are all carbohydrates. Their formulae are:

glucose, $C_6H_{12}O_6$, sucrose, $C_{12}H_{22}O_{11}$, starch, $(C_6H_{10}O_5)_n$.

(i) Identify **two** common features in the formulae of these carbohydrates.

______[2]

(ii) Draw the structure of a complex carbohydrate, such as starch. The formula of glucose, can be represented by

Include three glucose units in the structure.

[2]

Topic Chem 14 **Q# 152/** iGCSE Chemistry/2014/w/Paper 32/Q3

3 (a) A hydrocarbon has the following structural formula.

(i) State the molecular formula and the empirical formula of this hydrocarbon.

molecular formula

empirical formula[2]

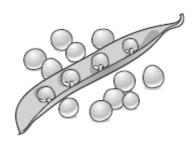
(ii) Draw the structural formula of an isomer of the above hydrocarbon.

	(iii)	Explain why these two hydrocarbons are isomers.
	(iv)	Are these two hydrocarbons members of the same homologous series?
		Give a reason for your choice.
(b)	Alk	enes can be made from alkanes by cracking.
	(i)	Explain the term cracking.
		[2]
	(ii)	One mole of an alkane, when cracked, produced one mole of hexane, C_6H_{14} , and two moles of ethene. What is the molecular formula of the original alkane?
(c) Al	kene	s are used in polymerisation reactions and addition reactions.
(i)		aw the structural formula of the product formed by the addition polymerisation of t-2-ene. Its formula is given below.
		H ₃ C CH ₃
		[3]
(ii)		ve the name and structural formula of the addition product formed from ethene and omine.
		meuctural formula

a)	(1)	What is meant by the term hydrocarbon?	F41
	(ii)	What is meant by the term saturated?	
b)	(i)	What is the general formula for the homologous series of alkanes?	
	(ii)	Calculate the mass of one mole of an alkane with 14 carbon atoms.	. [1]
			. [2]
(c)	The	complete combustion of hydrocarbons produces carbon dioxide and water only.	
	(i)	Write the equation for the complete combustion of nonane, C ₉ H ₂₀ .	
	(ii)	20 cm³ of a gaseous hydrocarbon was mixed with an excess of oxygen, 200 cm³. mixture was ignited. After cooling, 40 cm³ of oxygen and 100 cm³ of carbon diorremained. Deduce the formula of the hydrocarbon and the equation for its combustion volumes were measured at r.t.p	xide
Cr	ackin	g is used to obtain short-chain alkanes, alkenes and hydrogen from long-chain alkanes.	
Cr (i)	Giv	g is used to obtain short-chain alkanes, alkenes and hydrogen from long-chain alkanes. e a use for each of the three products listed above.	
	Giv	g is used to obtain short-chain alkanes, alkenes and hydrogen from long-chain alkanes. e a use for each of the three products listed above. ort-chain alkanes	
	Giv sho alk	g is used to obtain short-chain alkanes, alkenes and hydrogen from long-chain alkanes. e a use for each of the three products listed above. ort-chain alkanes enes	
	Giv sho alk hyo Wri	g is used to obtain short-chain alkanes, alkenes and hydrogen from long-chain alkanes. e a use for each of the three products listed above. ort-chain alkanes	

(e) Chlorine reacts with propane in a substitution reaction to form 1-chloropropane.

(i) What is the essential condition for the above reaction?


.....[1]

(ii) There is more than one possible substitution reaction between chlorine and propane. Suggest the structural formula of a different product.

.....[1]

Topic Chem 14 **Q# 154/** iGCSE Chemistry/2014/s/Paper 33/Q3

(b) Pea seeds grow in pods on pea plants.

Freshly picked pea seeds contain a sugar. The sugar can form a polymer.

Give the structural formula of the polymer and name the other product of this polymerisation reaction.

You may represent the sugar by the formula:

structural formula of the polymer

other product[3]

Topic Chem 14 **Q# 155/** iGCSE Chemistry/2014/s/Paper 33/Q1

1 Choose a gas from the following list to answer the questions below. Each gas may be used once, more than once or not at all.

ammonia carbon dioxide carbon monoxide fluorine

hydrogen krypton nitrogen propene sulfur dioxide

(b) It polymerises to form a poly(alkene). [1]

Topic Chem 14 **Q# 156/** iGCSE Chemistry/2014/s/Paper 32/Q4

4	Propanoic acid is a carboxylic acid. Its formula is CH ₃ -CH ₂ -COOH.									
	(a)	Pro	panoic acid is the third member of the homologous series of carboxylic acids.							
		(i)	Give the name and structural formula of the fourth member of this series.							
			name							
			formula		[2]					
		(ii)	Members of a homologous series have very similar chemical properties. State three other characteristics of a homologous series.							
					57575					
					[3]					
	(b)	Car	boxylic acids can be made by the oxidation of alcohols.							
		(i)	Draw the structural formula of the alcohol which can be oxidised to propanoic Show all atoms and bonds.	acid.						
					[1]					
		(ii)	Name a reagent, other than oxygen, which can oxidise alcohols to carboxylic	acids.						
					[2]					
(c)			ete the following equations for some of the reactions of propanoic acid. Its of this acid are called propanoates.							
	(i)	zin	rc + propanoic acid → + hydrogen	[1]						
	(ii)		lcium + propanoic → + xide acid	 [1]						
	(iii)	LiC	DH + CH ₃ CH ₂ COOH → +	[1]						
Topic		hem Nati	14 Q# 157/ iGCSE Chemistry/2014/s/Paper 32/Q2 ural gas, which is mainly methane, is a fossil fuel.							
		(ii)	Name two other fossil fuels.							
					[2]					
					1					

	formed if the decomposition occurred in the presenc	e of ox	cygen.		
					[2]
Mark	Scheme for Section 1				
MS Top	oic Chem 1 Q# 1/ iGCSE Chemistry/2015/s/Paper 32/Q2	ī			
2(c)	A; melting point/-7(°C) is below room temperature/25(°C)/RTP ora;		How melting point/boiling p	oint/con	ductivity
	boiling point/59(°C) is above room temperature/25(°C)/RTP ora;	3	25 (°C)/room temperature/ -7 (°C) and 59 (°C) OR 25 (temperature/RTP is between would both score the 2 evidence of the score of th	RTP is in (°C)/room en mpt ar	between n nd bpt
Topic Che	em 1 Q# 2/ iGCSE Chemistry/2014/w/Paper 33/Q2				
(i	ii) melting point/freezing point (of X)			[1	1]
(ii	ii) gas/gaseous or vapour			[1	1]
Topic Che	em 1 Q# 3/ iGCSE Chemistry/2014/w/Paper 33/Q2				
(b) (i)	14.3			[1]	
(ii)	85.7 ÷ 12 and 14.3 ÷ 1 or 7.14 and 14.3 ratio 1:2 CH ₂			[1] [1] [1]	
	note: Award all 3 marks for correct answer allow: alternative working e.g. $85.7 \times 84 \div 100$ and $14.3 \times 84 \div 100$ or $71.988/72$ and $12.6:12$ or ratio $1:2$ CH ₂	/12.01	2	[1] [1]	
(iii)	C ₆ H ₁₂			[1]	
•	em 1 Q# 4/ iGCSE Chemistry/2014/s/Paper 33/Q2 particles move in all directions/randomly in both liquids ar	nd gas	es (1)		
	no bonds/very weak forces between particles in gases (1) molecules can move apart/separate (to fill entire volume) OR	•			
	bonds/forces/IMF between particles in liquids (1) molecules cannot move apart/separate (so fixed volume i	n liqui	ds) (1)		[3]
MS Top	oic Chem 2 Q# 5/ iGCSE Chemistry/2015/w/Paper 33/Q1				
1(b)	boils at 100 °C/boiling point 100 °C/freezes at 0 °C/freezing point 0 °C/ melts at	0 <u>°C</u> /m	elting point 0°C;		1
•	em 2 Q# 6/ iGCSE Chemistry/2015/m/Paper 32/Q6				
(b) filte	er/centrifuge/decant			[1]	
wa	sh with (distilled) water			[1]	
(dr	y with) filter paper/tissues/warm windowsill/in sun/oven/f	an/he	at	[1]	
Topic Che	em 2 Q# 7/ iGCSE Chemistry/2014/w/Paper 32/Q1				
1 (a)	foodstuffs or drugs			_	[1]
					1

(b) Fossil fuels are formed by the anaerobic decomposition of organic matter. Anaerobic means in

(i) The organic matter contains hydrogen and carbon. Suggest the products that would be

the absence of oxygen.

(b) (i) simple distillation fractional distillation or diffusion fractional distillation filtration or evaporation [5] chromatography Topic Chem 2 Q# 8/ iGCSE Chemistry/2014/s/Paper 33/Q5 (d) lower the temperature (1) only ammonia will liquefy (1) OR add water (1) only ammonia will dissolve (1) OR increase pressure (1) only ammonia will liquefy (1) [2] MS Topic Chem 3 Q# 9/ iGCSE Chemistry/2015/w/Paper 33/Q6 6(d) 1 Topic Chem 3 Q# 10/ iGCSE Chemistry/2015/w/Paper 33/Q3 1 vibrate (about fixed position)/vibration; 3(a)(ii) electrostatic force of) attraction; 1 (between) positive ions and negative ions/oppositely charged ions/unlike charged ions/cations and anions; 3(a)(iii) regular/repealed/pattern/framework/ordered/alternating/organised (arrangement of); positive and negative ions/oppositely charged ions/cations and anions/unlike charged ions; Topic Chem 3 Q# 11/ iGCSE Chemistry/2015/w/Paper 32/Q6 M1 positive ions/cations/metallic ions; 3 6(b)the (correct) particles named in M1 are arranged in a lattice/rows/layers; sea of electrons/delocalised electrons: 6(c) 1 they have mobile electrons; 1 6(d) 2 6(e)strong covalent bonds; in a giant lattice/macromolecule/giant (structure); 6(f) 2 any two from: sodium chloride is ionic and PCl₃ is covalent, ionic bonds are strong and intermolecular forces are weak; PCl₃ reacts with water and NaCl does not: 3 6(h)XX Mg ਨੂੰ 0 magnesium with 8 or 0 outer shell electrons; oxygen with 8 outer shell electrons and 2 indicated differently from the other 6 and these 2 electrons must match the Mg electrons if these have been shown: correct charges; Topic Chem 3 Q# 12/ iGCSE Chemistry/2015/w/Paper 32/Q1 1(a)(i) 1 1(a)(ii) P₂S₃; 1 1(b)(i) Se²⁻: 1 1(b)(ii) Ga^{3*}: 1 Topic Chem 3 Q# 13/ iGCSE Chemistry/2015/s/Paper 33/Q2 2(e) silicon(IV) oxide; A silicon (di)oxide or SiO2 Topic Chem 3 Q# 14/ iGCSE Chemistry/2015/s/Paper 33/Q1 AIF₃; 1 1(a)(i) 1(a)(ii) As₂O₃; A As₂O₅ 1 SiBr₄: 1 1(a)(iii) P3-; 1(b)(i) 1 Ba²⁺; 1(b)(ii) 1 Fr*: 1 1(b)(iii)

1(c)	M1 2 double bor M2 each O has 8 M3 each C has 8		O and the C atom;		3	R wrong symbols R wrong symbols I missing symbols A any combination	for C for M3
pic Che	m 3 Q# 15/ iGC	SE Chemistry/2015	s/s/Paper 32/Q2				
2(a)		t/mp/mpt OR high boil ctor (when liquid and/or			3	I mpt/bpt above re	oom temp
2(b)	B; (good) conductor	when <u>solid</u> (and liquid)	;		2	A (good) conduct I high melting poi R low melting poi	
2(d)	C; high melting poin	t/mp/mpt OR high boil	ing point/bp/bpt;			A melting point ar room temp/25°C	nd boiling point both abo
nic Chei	OR molten/only	conductor when solid a conduct when liquid; SE Chemistry/2015		nen liquid	3		aqueous or in solution d due to free electrons
1	39 K ;	,,	,-,				
	26p 26e 30 ⁷ ₃ Li ⁺ numbers ar 31p 28e 39	nd symbol; charge +; n All three for 2 mark	ks, any two for 1 mark;				
		and symbol; charge 2			8		
		SE Chemistry/2015 between N & H	/m/Paper 32/Q3				[1]
	Lone pair on l	N SE Chemistry/2015	/m/Panor 22/02				[1]
		·	·	proton num	shor/or	tomo with corr	
	atomic numbe	same element/ <u>at</u> er	toms with same	proton nun	ibei / <u>a</u>	toms with sai	[1]
	different neutr	on number/nucl	eon number/ma	ass number			[1]
(b)_							
	particle	number of protons	number of electrons	number neutron		nucleon number	symbol or formula
	Α						
	В					23 (1)	Na(1) + (1)
	С		10(1)			16(1)	
L	D	13 (1)		15 (1)			
							[7]
							[Total:9]
•	m 3 Q# 19/ iGC chlorine/argo	SE Chemistry/2015 n	/m/Paper 32/Q1				[1]
	_	SE Chemistry/2014	/w/Paper 33/Q6				1.1
(a)	Rb loses 1 ele	ectron/1 electron	in outer shell/1	valency or	valend	e electron	[1]

SMASHING!!!

Sr loses 2 electrons/2 electrons in outer shell/2 valency or valence electrons

Topic Ch	iem 3	Q# 21/ iGCSE Chemistry/2014/w/Paper 33/Q3	
3 (a)	(i)	3	[1]
	(ii)	70	[1]
	(/		1-1
(b)) Add	d octane (or other liquid hydrocarbon) (to soot)	[1]
	CO	ND(on addition of any solvent) filter (to remove insoluble forms of carbon)	[1]
	(all	ow to) evaporate or heat or warm or leave in sun(to get crystals of fullerene)	[1]
(c)	(i)	graphite	[1]
	(ii)	delocalised electrons/free electrons/sea of electrons	[1]
		COND (on electrons) move/mobile/electrons flow	[1]
95000		Q# 22/ iGCSE Chemistry/2014/w/Paper 33/Q1	
(b)	Phy	aphite ysical: (good) conductor (of electricity) or soft or lubricant or high melting nt/high boiling point or grey black or black solid or slippery or greasy (to ch) or brittle/breaks when subjected to stress or insoluble in water	[1]
Topic Ch	nem 3	Q# 23/ iGCSE Chemistry/2014/s/Paper 33/Q4	
		heat limestone/calcium carbonate (1) lattice/rows/regular arrangement of cations/positive ions/Fe ²⁺ (1) mobile/free/delocalised/sea of electrons (1)	[2]
	(ii)	the rows of ions/ions can move past each other (1) without the metal breaking/bonds are not directional/not rigid (1)	[2]
•		Q# 24/ iGCSE Chemistry/2014/s/Paper 32/Q6 3 (1)	
	corr	rect charges on both ions (1)	
	8 el	ectrons around (each) fluoride (1)	[3]
•		Q# 25/ iGCSE Chemistry/2014/s/Paper 32/Q5 <u>ach</u> chlorine 1 bond pair and 3 non-bond pair (1)	
	ОХ	ygen atom 2 non-bond pairs and 2 bond pairs as double bond (1)	
	ca	rbon atom 4 bond pairs including 2 bond pairs as double bond (1)	[3]
•		Q# 26/ iGCSE Chemistry/2014/s/Paper 32/Q1	
	D (1)		[1]
	B (1)		[1]
	E (1		[1]
_	_	hem 4 Q# 27/ iGCSE Chemistry/2015/w/Paper 33/Q7	
7(a)	nun	es of KOH used (= $0.025 \times 2.53 =$) $0.06325/0.063$; wher of moles of H_2SO_4 needed to neutralise the KOH = $0.031625/0.032$; centration of dilute sulfuric acid = $1.121/1.1$ (mol/dm ³);	3
Topic Ch	nem 4	Q# 28/ iGCSE Chemistry/2015/w/Paper 33/Q6	
6(c)		SO ₄) ₅ ;	1
Topic Ch	_	Q# 29/ iGCSE Chemistry/2015/w/Paper 33/Q4 (cm³);	
4(c)(ii)	_	(cm ⁻); (cm ³);	1
- 24 2		to P	

Topic Chem 4 Q# 30/ iGCSE Chemistry/2015/w/Paper 33/Q2

			_		
2(b)	hydrogen/H ₂ ;	1]		
2(e)	carbon monoxide/CO;	1			
Topic Chem 4 Q# 31/ iGCSE Chemistry/2015/w/Paper 32/Q4					

TOPIC CITC	opic enem 4 Qii 31) reest enemistry 2013/ W/T aper 32/ Q4			
4(b)	M1 bonds breaking = (8 × 412) + (2 × 348) + 242 = 4234;	3		
	M2 bonds forming = $(7 \times 412) + (2 \times 348) + 338 + 431 = 4349$;	l		
	M3 4234 – 4349 = -115 and exothermic;	1		

Topic Chem 4 Q# 32/ iGCSE Chemistry/2015/w/Paper 32/Q4

	· · · · · · · · · · · · · · · · · · ·	
4(d)(i)	46;	1
4(d)(ii)	60;	1
4(d)(iii)	moles of CH ₂ CH ₂ CH ₂ OH = 0.1; moles of HCOOH = 0.087 (0.09) and limiting reagent is methanoic acid;	2
4(d)(iv)	88 × (mol of limiting reagent in 4(d)(iii)); expected answer: 88 × 0.087 = 7.65 g;	1

Topic Chem 4 Q# 33/ iGCSE Chemistry/2015/w/Paper 32/Q1

1(c)(i)	Cr ₂ (SO ₄) ₃ ;	1
1(c)(ii)	Ba(OH) ₂ ;	1

Topic Chem 4 Q# 34/ iGCSE Chemistry/2015/s/Paper 33/Q5

5(c)(i)	79.2828685; 79.6205853; 84.7161572;	2	Minimum 3 sig figs A rounding or truncating All three correct = 2 marks, Two correct = 1 mark
5(c)(ii)	the last one OR Cu and O2 OR the one from copper;		
	not all the copper oxidised OR the outside of the pieces of copper oxidised but the inside did not OR (still) contains copper (metal);	2	ecf of biggest for M1

Topic Chem 4 Q# 35/ iGCSE Chemistry/2015/s/Paper 32/Q6

6(c)(ii)	Avogadro('s) number/constant/6.02 × 10 ²³ ; COND particles; OR		A any values from 6 to 6.023 ×10 ²³ A atoms/ions/molecules/electrons
	(the number of particles which is equal to the number of atoms in) 12 g of carbon 12; COND atoms;		A one mark for reference to C12 A equivalent statement for any element or compound e.g. 32 grams of oxygen(1) COND
	OR the mass in grams which contains Avogadro('s) Number; COND particles;		molecules/O ₂ (1) e.g. 16 grams of oxygen (1) COND atoms/O(1)
	OR (the amount of substance which has a mass equal to) its <u>relative</u> formula mass/RFM/ <u>relative</u> atomic mass/Ar/ <u>relative</u> molecular mass/Mr/molar mass; COND in grams;		
	OR (the amount of substance which has a volume equal to) 24 dm³; COND of a gas at RTP;	2	A different volumes under different conditions e.g. 22.4 dm³ at STP or volumes in different units e.g. 24000 cm³ at RTP

Topic Chem 4 **Q# 36/** iGCSE Chemistry/2015/s/Paper 32/Q3

3(b)(ii)	M1 (so that ionic) charges balance or cancel/charge = 0/no charge/number of positive = number of negative charges/charge is neutral or neutralised; M2		A 6(+) = 6(-)
	$3(-) \times 2 = 2(+) \times 3$;	2	I statements about electron transfer / valency / ox state unless valency is referring to ionic
			charges e.g. valencies 3+ and 2- can get credit if used properly
			Ratio of ions is 3:2 therefore ratio of charges is 2:3 scores 2

Topic Chem 4 Q# 37/ iGCSE Chemistry/2015/m/Paper 32/Q7 (b) (i) Mr = 180 (1) (30/180) = 0.167 (1)

$$(2 \times 0.167 \times 46) = 15.3(33)$$
 (g) [1]

(iii)
$$(2 \times 0.167 \times 24) = 8 \text{ (dm}^3)$$
 [1]

[2]

Topic Chem 4 Q# 38/ iGCSE Chemistry/2014/w/Paper 33/Q8

(c) number of moles of HCl in 50 cm³ of acid, concentration 2.2 mol/dm³ = 0.11

maximum number of moles of CoCl₂.6H₂O which could be formed = 0.055

mass of 1 mole of CoCl2.6H2O = 238 g

maximum yield of $CoC l_2.6H_2O = 13.09g$ [1]

percentage yield = 48.2% or ecf mass of CoC l_2 .6H₂O above/13.09 × 100% to $\underline{1}$ \underline{dp} [1]

Topic Chem 4 Q# 39/ iGCSE Chemistry/2014/w/Paper 32/Q6

(iii) M1 = 2.07 Allow 2.1 or 2.0666...7

$$M2 = 62.8.q$$

$$M3 = (M2/152 =) 0.41(3)$$

M4 (=M1/M3) rounded to the nearest whole number \times = 5 [4]

Topic Chem 4 Q# 40/ iGCSE Chemistry/2014/s/Paper 32/Q7

(b) <u>0.062</u> (1)

0.031 (1)

3.97g (1)

55.4% (1) [4]

- (c) (i) (to prove) <u>all</u> water driven off or evaporated or boiled/no water remains/to make salt anhydrous (1)
 - (ii) $m_1 m_2 = mass of water (1)$

(calculate) moles of water AND moles of hydrated or anhydrous salt (1)

1:1 ratio/should be equal (1)

[3]

[1]

[1]

MS Topic Chem 5 Q# 41/ iGCSE Chemistry/2015/w/Paper 33/Q3

3(b)(i)	correct direction (going towards negative electrode);	1
3(b)(ii)	$Li^+ + e^- \rightarrow Li/Li^+ \rightarrow Li - e^-;$	1
3(b)(iii)	$2Br$ → Br_2 + $2e^-/2Br$ − $2e^-$ → Br_2 formulae; balancing;	2
3(b)(iv)	Br /bromide (ion); electron lost/donated electrons/increased oxidation state/increased oxidation number/oxidation numbers changed from -1 to 0/increased valency;	1
3(c)	M1 (gas) hydrogen (given off at cathode)/ H_2 ; M2 hydroxide <u>ions</u> /lithium hydroxide/OH ⁻ /LiOH are alkali(ne); M3 2LiBr + 2H ₂ O \rightarrow 2LiOH + H ₂ + Br ₂ ; or 2H ⁺ + 2e ⁻ \rightarrow H ₂ /2H ⁺ \rightarrow H ₂ - 2e ⁻ ; or 2Br \rightarrow Br ₂ + 2e ⁻ /2Br \rightarrow 2e ⁻ \rightarrow Br ₂ ; or 2H ⁺ + 2Br \rightarrow H ₂ + Br ₅ :	3

Topic Chem 5 Q# 42/ iGCSE Chemistry/2015/w/Paper 32/Q3

	3(c)	zinc sulfate; pure zinc;	
		$Zn^{2+} + 2e^- \rightarrow Zn;$	
		Zn → Zn ²⁺ + 2e ⁻ ; zinc <u>ions</u> are removed (from solution) and replaced (into solution);	
L		at the same rate/speed;	

Topic Chem 5 Q# 43/ iGCSE Chemistry/2015/s/Paper 32/Q3

3(a)	M1 both correct charges of ions (calcium 2+ and nitrogen 3-);		Charges can be shown anywhere I missing symbols for nitrogen R wrong symbol of nitrogen anywhere
	M2 8 electrons around nitrogen (can be 3 dots and 5 crosses or 5 crosses and 3 dots or all dots or all crosses, but reject any other combinations of dots and crosses);		
	M3 Two electrons on the inner shell on any nitride ions/nitrogen atom: allow 2x or 2o once;		A if electron configuration of nitride is given as 2,8 or N is given as 2,5 I any missing inner shells as long as one is present
		3	General guidance: I electron configuration/symbol of calcium ion I formulae/stoichiometry Covalent can score only M3
3(b)(i)	regular/repeated/pattern/framework/periodic/ordered/alternating/ organised;		Hayers
	(of)particles/atoms/molecules/ions/cations/anions;	2	A ionic/molecular/atomic I arrangement/bonding/properties

Topic Chem 5 Q# 44/ iGCSE Chemistry/2014/w/Paper 33/Q4

(b)
$$2H_2 + O_2 \rightarrow 2H_2O$$
 [1]

- (c) (i) anode/negative electrode and electrons lost(by hydrogen/H/H₂)/electrons move from this electrode [1]
 - (ii) $H_2 \rightarrow 2H^+ + 2e(\bar{\ }) / H_2 2e(\bar{\ }) \rightarrow 2H^+ / H_2 + 2OH^- \rightarrow 2H_2O + 2e(\bar{\ }) / H_2 + 2OH^- 2e(\bar{\ }) \rightarrow 2H_2O$ [2] Species (1) Balancing (1)

Topic Chem 5 Q# 45/ iGCSE Chemistry/2014/w/Paper 32/Q4

- 4 (d) (i) from zinc to carbon
 - (clockwise direction on or near the wire) [1]
 - (ii) to allow ions to flow [1]
 - (iii) oxidation and loss of electron(s) or increase in oxidation number/state

reduction
and decrease in oxidation number/state or gain of electron(s)
[1]

Topic Chem 5 Q# 46/ iGCSE Chemistry/2014/s/Paper 33/Q7

(ii)
$$4OH^- \rightarrow O_2 + 2H_2O + 4e$$
 (2) [2]

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$
 (2)

Topic Chem 5 **Q# 47/** iGCSE Chemistry/2014/s/Paper 32/Q5

5 (b) hydrogen and chlorine/H₂ and Cl₂ (1)

sodium hydroxide/NaOH/Na⁺OH⁻(1)

$$2H^{+} + 2e \rightarrow H_{2}/2H^{+} \rightarrow H_{2} - 2e$$
 (1)

$$2Cl^- \rightarrow Cl_2 + 2e/2Cl^- - 2e \rightarrow Cl_2$$
 (1)

Hydrogen/ $H_2/H/H^{\dagger}$ at cathode and chlorine/chloride/ $Cl_2/Cl/Cl^{-}$ at anode (1) [5]

[1]

Patrick Brannac

MS	Topic C	hem 6 Q# 48/	GCSE Chemistry/2014/w/Paper 33/Q5		
			+ $2e() / 2Cl - 2e() \rightarrow Cl_2$		[1]
		2H+ 2e(-)	\rightarrow H ₂ / 2H ⁺ \rightarrow H ₂ - 2e($^-$)		[1]
		hydrogen for	med at cathode/- and chlorine at anode/+		[1]
		Na ⁺ and OH ⁻ sodium hydro	or sodium ions and hydroxide ions left in solution/form/become oxide	е	[1]
	(ii)	Cl ₂ + 2NaO Species (1) E	H → NaClO/NaOCl + NaCl + H₂O Balancing (1)		[2]
Topi	c Chem 6	Q# 49/ iGCSE CI	nemistry/2014/w/Paper 33/Q4		
4	(a) carl	oon dioxide/C0	O_2		[1]
(d)	Any two	from:			
	CELL:		lightweight quieter		
			fewer working parts/less maintenance		
			more efficient or less energy wasted or more energy		
	SHETN	NABILITY:	produced conserves a limited resource/petroleum/fossil fuels		
	3031A	INADILITT.	unlimited supplies of renewable resource(of hydrogen from water)		
	POLLU	TION:	No or less greenhouse effect		
			No or less acid rain		
			No or less toxic gases No or less smog		
	POLLU	TANTS:	No or less C/soot		
			No or less CO ₂		
			No or less CO		
			No or less SO ₂ No or less oxides of nitrogen/NO/NO ₂ /N ₂ O ₄ /NO _x		
			No or less (unburnt) hydrocarbons		
			No or less low level ozone		
			H ₂ O is the <u>only</u> product	[2]	
				[Total: 7]	
Topi	c Chem 6	Q# 50/ iGCSE Cl	nemistry/2014/w/Paper 32/Q2		
	(ii)	M1 electrolys	sis		[1]
		M2 molten so	odium chloride		[1]
		or	ad mara reactive metal (a.g. IV)		
			ed more reactive metal (e.g. K) odium chloride		
Topi	c Chem 6 (nemistry/2014/s/Paper 33/Q5		
		line +3 × 155	·		
	third lin	$e - 3 \times 280 = ($	–)840		
		ne –3 × 565 =	(–)1695		
		e correct (2)			
	two cor	rect (1)			
	1170 ±	465 = 1635			
		695 = 2535			-

both numerically correct (1)

exothermic reaction with some reasoning (1)

Topic Chem 6 Q# 52/ iGCSE Chemistry/2014/s/Paper 33/Q1 [1] (g) hydrogen (1) Topic Chem 6 Q# 53/ iGCSE Chemistry/2014/s/Paper 32/Q2 (a) (i) substance/material/compound/element/mixture (burnt) to produce/release energy or heat (1) [1] (iii) wood/charcoal/animal dung/biomass/Uranium/U/plutonium/Pu (1) [1] MS Topic Chem 7 Q# 54/ iGCSE Chemistry/2015/w/Paper 33/Q5 $Br_2 + 2e^- \rightarrow 2Br^-/Br_2 \rightarrow 2Br^- - 2e^-$; 1 Topic Chem 7 Q# 55/ iGCSE Chemistry/2015/w/Paper 33/Q3 3(b)(iv) Br / bromide (ion); electron lost/donated electrons/increased oxidation state/increased oxidation number/oxidation numbers changed from -1 to 0/increased valency: Topic Chem 7 Q# 56/ iGCSE Chemistry/2015/w/Paper 32/Q6 the number of e gained or lost = numerical value of oxidation state; 1 2 any two from: Na to A1 (Si) lose e⁻; (Si) P to Cl gain e⁻; Si gains and loses e⁻/ Ar neither gains nor loses e⁻; Topic Chem 7 Q# 57/ iGCSE Chemistry/2015/w/Paper 32/Q4 a reaction whose rate is influenced by light/reaction which occurs in presence of light; 1 Topic Chem 7 Q# 58/ iGCSE Chemistry/2015/s/Paper 33/Q6 (light from the) sun/sunlight; 6(d)(i) 1 A uv 6(d)(ii) carbon dioxide + water → glucose + oxygen; A starch / sugar / (named) carbohydrate I energy or light on LHS Topic Chem 7 Q# 59/ iGCSE Chemistry/2015/s/Paper 33/Q3 carbon dioxide escapes/leaves/lost/released OR not a closed system; 3(a)A gas escapes/leaves/lost/released Topic Chem 7 Q# 60/ iGCSE Chemistry/2015/s/Paper 32/Q7 A 'we /us' for 'humans' living/organism or named example e.g. yeast/cells/plants/animals/part of 7(a)(i) animal or plant e.g. muscle/humans/micro-organisms; produces/releases or gain or obtain energy/exothermic/heat; from food/named foodstuff/carbohydrate/named carbohydrate/sugar/ 3 I products / breathing / oxygen / anaerobic / aerobic named sugar/glucose/nutrients; R biocatalyst/living biological catalyst 7(a)(iii) biological catalyst or protein catalyst; 7(a)(iv) answer must include both measuring the time and measuring a relevant quantity; A time taken for lime water to turn milky OR alternatively measuring the time taken for something to happen; A time taken for bubbling to stop/gas stop being evolved A count bubbles per minute alternatives to time are: units of time/apparatus to measure time/regular A measure temperature (change) with time intervals/how long R time taken for reaction to end examples of relevant quantities are: R measure carbon dioxide/gas with time (no (Increase in/decrease in) amount/mass/volume/bubbles of carbon reference to amount) dioxide/bubbles of gas OR (Increase in/decrease in) mass of apparatus; temperature increase/heat increase/warmer/high temperature/exothermic/ R yeast was added 7(b)(i)

reacting

R yeast used up

1

2

R yeast was added

I glucose or reactants reacted/stopped

R enzyme dies/ yeast denatures

7(b)(ii)

7(b)(iii)

more yeast/yeast reproduces/yeast increases/yeast multiplies;

OR glucose or reactant(s) used up/finished/runs out/reacted completely/

more yeast/yeast reproduces/increases/ multiplies;

OR ethanol is toxic to yeast/ethanol kills yeast;

all glucose or reactant(s) reacted OR no glucose or reactant(s) left

fully reacted;

yeast (cells) dies OR enzymes denatured

Topic	Che	<u>m 7</u>	Q# 61/ iGCSE Chemistry/2015/s/Paper 32/Q6			
6(t	b)(ii)		olour changes) from pink/purple; colourless/decolourised;	2	I clear/discoloured/effervescence I brown fumes/brown gas NOTE: stays pink or purple gets firs turns purple or pink is 0	t mark but
Topic	Che	m 7	Q# 62/ iGCSE Chemistry/2015/s/Paper 32/Q3			
3	(c)	it (refers to Ca)/Calcium/Ca (atom) loses/gives/donates electrons/e/e ⁻ ;		A half-equation with electrons on rig side R calcium ion/Ca ²⁺	ht-hand
		(th	ese are) gained by nitrogen/N/N ₂ ;		A half-equation with electrons on let R nitride ion/N³- I numbers of electrons/charges on ions/oxidation state/valency if men R reference to oxygen/hydrogen if is suggestion that oxygen/hydrogen a in the reaction I reference to oxygen/hydrogen if in statement e.g. oxidation is gain of o	tioned there is a re involved
		sta OF	rogen/ N/ N ₂ is reduced so calcium/ Ca is the reducing agent (these two atements could be split i.e. not in same sentence) R reducing agents are electron donors/ give/lose electrons R calcium/ Ca is oxidised (by electron loss) therefore calcium is the		Electrons/e/e ⁻ move from calcium get marks 1 and 2 A calcium/Ca/it is a reductant or calcium	
		rec	ducing agent (these two statements could be split i.e. not in same ntence);	3	it reduces	aicium/Ca/
			Q# 63/ iGCSE Chemistry/2014/w/Paper 33/Q8		ı	
8 Tonic	٠.	•	nanges from) blue (1) to pink (1) Q# 64/ iGCSE Chemistry/2014/w/Paper 33/Q5			[2]
5			rate decreases			[1]
			concentration of sodium chlorate ((I))/reactant decre	ases		[1]
		(ii)	(initial) gradient greater/steeper (must start at origin) same final volume of oxygen			[1] [1]
		(iii)	(to prevent)photochemical reaction/(to prevent)reactions light/light breaks down or decomposes sodium chlorated to the composes of the compose			[1]
		(iv)	more collisions			[1] [1]
			collisions more frequent or more often/greater chance rate increases/more particles have energy to react/m successful or effective			[1]
•			Q# 65/ iGCSE Chemistry/2014/w/Paper 33/Q2			
			(X(s) ↔) X(l)			[1]
-			Q# 66/ iGCSE Chemistry/2014/w/Paper 33/Q2 $(X(s) \leftrightarrow) X(I)$			[1]
			Q# 67/ iGCSE Chemistry/2014/w/Paper 32/Q6 add water (to yellow solid or to (anhydrous) iron(II) su	ulfate o	or to FeSO ₄ or to products	[1]
			goes green			[1]
Topic 5			Q# 68/ iGCSE Chemistry/2014/w/Paper 32/Q5 talyst			[1]
			ological or protein			[1]
5	(c)	(i)	CAB			[2]
			ABC = 1 ACB = 1 BCA = 1 CBA = 1 BAC = 0			
			Allow 70 for C, 40 for B and 20 for A			

	(11)	M1 Energy mark: at higher temperature particles/molecules more have more move faster	energy or [1]
		M2 Collision frequency mark: collide more frequently/often or more collisions time or higher rate of collisions. Ignore: 'more collisions'	per unit [1]
		M3 Collision energy mark: more molecules have enough energy to react or molecules are above activation energy or successful	nore [1]
(iii)	C rate z	zero or enzymes denatured	[1]
Topic 3		Q# 69/ iGCSE Chemistry/2014/s/Paper 33/Q3 enzymes (1)	[1]
	(ii)	reduces growth of microbes/rate of reproduction of microbes is lower/microbes are dormant (1) fewer (enzymes) to decay food (1) OR enzymes less efficient at lower temperatures (1) slower reaction rate (1)	[2]
	any thr photosy light/pl chlorop carbon	Q# 70/ iGCSE Chemistry/2014/s/Paper 33/Q3 ree from: ynthesis (1) notochemical (1) shyll/chloroplasts (1) dioxide and water needed (1) re and) oxygen (1)	[3]
Topic	Chem 7	Q# 71/ iGCSE Chemistry/2014/s/Paper 33/Q2	
2	part mov colli mor	three from: icles have more energy (1) ve faster (1) de more frequently (1) re particles have energy greater than E _a dance: more colliding molecules have enough energy to react is worth (2)	[3]
Topic	Chem 7	Q# 72/ iGCSE Chemistry/2014/s/Paper 32/Q5	
	(ii)	any two from:	
		(forward) reaction is endothermic (1)	
		high temperature increases yield/favours forward reaction/shifts equilibrium to right (1)	
		faster reaction (rate) (1)	[2]
	(iii)	any two from:	
		high pressure reduces yield or favours LHS (1)	
		because LHS has smaller volume or number of moles/number of molecules (of gas) ORA (1)	
		(high pressure plant is) expensive/dangerous/explosion/leaks	[2]

Topic Chem 7 Q# 73/ iGCSE Chemistry/2014/s/Paper 32/Q4

(d) (i) concentration (of acid in C) is less/halved or concentration of A is more/doubled. (1)

less collisions or more collisions in A (than in C) (1)

[2]

 (ii) (higher temperature in B particles/molecules/atoms) move faster/have more energy/more have E_a or (particles/molecules/atoms) in A move slower/have less energy/less have E_a (1)

more collisions or less collisions in A (than in B) (1)

[2]

[1]

- (iii) It (D) has strong (acid) and A has weak acid/(D) stronger/(D) ionises more/(D) dissociates more or A is weaker/A ionises less/A dissociates less (1)
 - It (D) has <u>higher concentration of hydrogen ions</u> or A has a <u>lower concentration of hydrogen ions</u> (1)

more collisions (in D) or fewer collisions in A (1)

[3]

Topic Chem 7 Q# 74/ iGCSE Chemistry/2014/s/Paper 32/Q1

(e) F(1)

MS Topic Chem 8 Q# 75/ iGCSE Chemistry/2015/w/Paper 33/Q7

7(b)(i)	repeat experiment using same volume/amount of (same) H ₂ SO ₄ ; and same volume/amount of (same) KOH; or (add activated) charcoal/carbon; filter out the charcoal; or mix volumes/amounts of H ₂ SO ₄ and KOH in the ratio 1:2; of the same concentration;	2
7(b)(ii)	make solution of potassium sulfate as above; add same volume / amount of acid again; or same volume / amount of KOH; add double the volume / amount of H_2SO_4 ; $25\text{cm}^3\text{KOH}+56.4\text{cm}^3\text{H}_2SO_4=[2]$ or same volume / amount of H_2SO_4 ; add half the volume / amount of KOH; $12.5\text{cm}^3\text{KOH}+28.2\text{cm}^3\text{H}_2SO_4=[2]$ or mix equal volumes / amounts of H_2SO_4 and KOH; of the same concentration; mix solutions containing equal numbers moles of KOH and $H_2SO_4=[2]$	2
7(c)	test: reactive metal/ name or formula of suitable metal, e.g. Mg/Fe/Zn; result bubbles or gas or hydrogen or H ₂ evolved/ dissolves;	2
	test: insoluble carbonate or name/formula of suitable insoluble carbonate, e.g. CaCO ₃ ; result bubbles or gas or carbon dioxide or CO ₂ evolved/dissolves provided that carbonate is insoluble; test: alkali or name/formula of suitable alkali, e.g. NaOH/KOH;	
	result temperature change;	
	test: alkali or name / formula of suitable alkali, e.g. NaOH/KOH and indicator, result colour change;	
	test: insoluble base or name/formula of suitable insoluble base; result dissolves;	
	test: indicator, e.g. blue litmus; result colour change (colour need not be specified);	
	1	

Topic Chem 8 Q# 76/ iGCSE Chemistry/2015/w/Paper 33/Q5

5(a)(i)	proton donor/H ⁺ donor/hydrogen ion donor;	1
	strong acid completely or fully ionises/completely or fully dissociates/completely or fully splits into ions; weak acid partially or incompletely ionises or dissociates or splits into ions/does not ionise fully;	1

5(b)(i)	barium sulphite/barium sulfate(IV)/BaSO ₃ ;	1
5(b)(ii)	barium sulfate /BaSO4;	1
5(b)(iii)	$Br_2 + 2e^- \rightarrow 2Br^-/Br_2 \rightarrow 2Br^ 2e^-;$	1
5(b)(iv)	sulfuric acid;	1
5(c)(i)	(→) magnesium sulfate + water;	1
5(c)(ii)	(→) zinc sulfate + hydrogen;	1
5(c)(iii)	(→) copper(II) sulfate / copper sulfate + carbon dioxide + water;	1
5(d)(i)	$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4/NH_3 + H_2SO_4 \rightarrow (NH_4)HSO_4;$	1
5(d)(ii)	$ 2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O \\ Na_2SO_4; \\ rest of equation correct; \\ \textbf{or} \\ H^* + OH^- \rightarrow H_2O \\ H_2O \text{ as the only product on the right hand side;} \\ rest of equation correct; \\ \textbf{or} \\ NaOH + H_2SO_4 \rightarrow NaHSO_4 + H_2O \\ NaHSO_4; \\ rest of equation correct; \\ \textbf{or} \\ OH^- + H_2SO_4 \rightarrow HSO_4^- + H_2O \\ HSO_4^-; \\ rest of equation correct; \\ rest of equation correct; \\ rest of equation correct; \\ $	2
5(d)(iii)	Fe + $H_2SO_4 \rightarrow FeSO_4 + H_2$; FeSO ₄ ; rest of equation correct; or Fe + $2H^* \rightarrow Fe^{2^*} + H_2$; Fe ^{2*} ; rest of equation correct; or $2Fe + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2$; Fe ₂ (SO ₄) ₃ ; rest of equation correct; or $2Fe + 6H^* \rightarrow 2Fe^{3^*} + 3H_2$; Fe ^{3*} ; rest of equation correct;	2

Topic Chem 8 Q# 77/ iGCSE Chemistry/2015/w/Paper 33/Q1

1(a)	cobalt chloride (paper)/anhydrous cobalt chloride/CoCl ₂ ;	3
	from blue; to pink;	
	or copper sulfate / anhydrous copper sulfate / CuSO ₄ ;	
	from white; to blue;	

Topic Chem 8 Q# 78/ iGCSE Chemistry/2015/w/Paper 32/Q6

•	Op. 0		
		MgO will react with/dissolve in/neutralise hydrochloric acid/acid/acid oxide; if amphoteric, MgO will react with or dissolve in or neutralise hydrochloric acid or acid or acid oxide and MgO will react with dissolve in or neutralise sodium hydroxide or alkali or base or basic oxide;	2
		MgO will not react with or dissolve in or neutralise sodium hydroxide or alkali or base or basic oxide = [2]	

Topic Chem 8 **Q# 79/** iGCSE Chemistry/2015/s/Paper 33/Q4

	, , , , , , , , , , , , , , , , , , , ,			
4(b)(iii)	add sodium hydroxide (solution) and aluminium; (warm) and ammonia made;		2	A zinc or Devarda's A description of smell of ammonia or for ammonia
4(b)(iv)	M1 measure pH/describe how to measure pH (such as use universal indicator); M2 lower pH greater concentration of H ⁺ ;			
	OR M1 add Ca, Mg, Zn, Fe; M2 faster reaction greater concentration of H* /faster bubbles or more hydrogen (in same time);		A M2	if non specified or other metal added
	OR M1 rate of reaction with (metal) carbonate; M2 faster reaction greater concentration of H* /faster bubbles or more carbon dioxide (in same time);			
	OR M1 electrical conductivity; M2 greater conductivity greater concentration of H*;			
	OR M1 titrate with (named) alkali; M2 correct result;	2		

Topic Chem 8 Q# 80/ iGCSE Chemistry/2015/s/Paper 33/Q2

2(a)	carbon monoxide;	1	A CO
2(b)	sodium oxide;	1	A Na ₂ O
2(d)	zinc oxide OR aluminium oxide;	1	A ZnO or Al ₂ O ₃
2(f)	sulfur dioxide;	1	A SO ₂

Tonic Chem 8 O# 81/ iGCSF Chemistry/2015/s/Paper 32/05

L	11 6 Q# 617 19CSE CHEHIISH	L	F
5(a)	method A; hydrochloric acid/HC1/hydrogen chloride solution;		hydrochloric acid/HCI can only score if written in the reagent space i.e. R hydrochloric acid/HCI in equation if reagent space is blank I hydrogen chloride (therefore 'hydrogen chloride + HCI would get mark 2 BOD) I nickel carbonate
	nickel carbonate + hydrochloric acid → nickel chloride + water + carbon dioxide;	3	A fully correct balanced chemical equation i.e. $NiCO_3 + 2HCl \rightarrow NiCl_2 + CO_2 + H_2O$ for the third mark R combination of words and formulae in the same equation for the third mark I concentration of acid for marks 2 and 3
5(b)	method C; any (aqueous/dilute/solution of soluble) bromide including potassium bromide/ KBr, hydrogen bromide/ HBr i.e. all bromides except silver, lead and mercury;		A correct formula of soluble bromide Head nitrate
	Pb ²⁺ + 2Br → PbBr ₂ ;	3	I state symbols A multiples
E(a)	method B:		
5(c)	method B; sulfuric acid / hydrogen sulfate / H ₂ SO ₄ ; 2LiOH + H ₂ SO ₄ → Li ₂ SO ₄ + 2H ₂ O		I concentration of acid for mark 2 I indicators/ lithium hydroxide
	species; balancing;	4	I state symbols A multiples

Topic Chem 8 Q# 82/ iGCSE Chemistry/2015/m/Paper 32/Q6

6 (a) Any two from:

- bubbles/effervescence/fizzing
- (some of the) solid/copper carbonate dissolves/disappears or some (brown) solid seen (undissolved)
- (colourless) solution or liquid turns blue

[2]

Equation

[1]

(d) (i)
$$Cu(OH)_2(s) \rightarrow CuO(s) + H_2O(g)$$

[1] [1]

State symbols of correct chemical equation

[1]

(ii)
$$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$$

[2]

The rest (1)

Topic Chem 8 Q# 84/ iGCSE Chemistry/2015/m/Paper 32/Q1

(c) magnesium

(e) aluminium

Topic Cher	n 8 Q# 8 6	5/ iGCSE Chemistry/2015/m/Paper 32/Q1 5/ iGCSE Chemistry/2014/w/Paper 33/Q8	
(b)		e (solid) dissolves or no more cobalt(II) carbonate dissolves or no more cence or bubbling or fizzing	[1]
	filter(res	idue)/centrifuge/decant	[1]
	gone/so point/cry	te/heat/warm/boil/leave in sun AND until most of the water has me water is left/until it is concentrated/saturation (point)/crystallisation ystals form on glass rod or microscope slide/crystals start to form Ilow to cool/allow to crystallise/filter (off crystals)/wash(with distilled	[1]
	water)/d	lry crystals with filter paper/dry crystals in warm place or dry in oven or vindowsill	[1]
Topic Cher	m 8 Q# 8 7	7/ iGCSE Chemistry/2014/w/Paper 33/Q6	
(b)	(i) (mix	solutions of) rubidium carbonate/Rb ₂ CO ₃	[1]
		ntium chloride/SrCl ₂ or strontium nitrate/Sr(NO ₃) ₂ or strontium ate/SrSO ₄ or strontium hydroxide/Sr(OH) ₂	[1]
	CO	ND (on two correct reactants) filter or centrifuge or decant (the residue)	[1]
		sh with water and dry/press between filter paper/put in (low) oven/put on a nny) windowsill/put in sun/heat	[1]
•		3/ iGCSE Chemistry/2014/w/Paper 32/Q6	
		c acid or nitric(V) acid or HNO ₃	[1]
		9/ iGCSE Chemistry/2014/w/Paper 32/Q1 dissolving	
		filtration	
		evaporation or heat (to crystallisation point)	
	M4 or	crystallisation or allow leave to cool	[4]
	M3	crystallisation filtration	
	OR	: Adding to H ₂ SO ₄ method	
		Add excess mixture to acid (or until no more dissolves) Filtration	
	M1	Add excess acid to mixture With heat	
		evaporation or heat (to crystallisation point) Stop marking if heated to dryness crystallisation or allow leave to cool	š.
		crystallisation	
		filtration	
		оП	tal: 10]

Topic Chem 8 Q# 90/ iGCSE Chemistry/2014/s/Paper 32/Q7

7 (a) repeat without indicator/repeat using same volumes of acid and alkali or use carbon/charcoal to remove indicator (1)

evaporate/heat/warm/boil/leave in sun (1)

until most of the water has gone/some water is left/saturation (point)/ crystallisation point (1)

leave/allow to cool/allow to crystallise (1)

filter (off crystals)/wash(with distilled water)/dry crystals with filter paper/dry crystals in warm place/oven/windowsill (1)

[5]

Topic Chem 8 Q# 91/ iGCSE Chemistry/2014/s/Paper 32/Q6

(c) name or formula of strong acid and alkali (1)

reacts with or neutralises both acid and base or alkali (then amphoteric) (1)

it dissolves/soluble in both(acid and alkali) or form solutions in both (1)

[3]

MS Topic Chem 9 Q# 92/ iGCSE Chemistry/2015/w/Paper 33/Q6

6(a)	Na/sodium and Li/lithium;	1
6(f)	physical properties any three from: hard; strong; high density; malleable; ductile; sonorous; shiry; high melting point/high boiling point; (good) conductor (of heat/electricity); forms coloured compounds/coloured ions/coloured salts; chemical properties any two: catalytic behaviour; more than one or different or variable oxidation state or oxidation number or valency/variable charges/many differently charged ions; forms complex (ions); forms coloured compounds/coloured ions/coloured salts; amphoteric oxide/amphoteric/basic oxide/alkaline oxides/acidic oxide; (other metallic reactions) with acids/water/steam; reducing agent/electron donor/reacts with non-metal to form ionic compound/forms positive ions:	5

Topic Chem 9 Q# 93/ iGCSE Chemistry/2015/w/Paper 33/Q2

		<u> </u>	
2(d)	argon/Ar;		1

Topic Chem 9 Q# 94/ iGCSE Chemistry/2015/m/Paper 32/Q1

(d) argon [1]

(f) sodium [1]

Topic Chem 9 **Q# 95/** iGCSE Chemistry/2014/w/Paper 33/Q3

(iii) Any two from: [2]

potassium oxide
potassium hydroxide
potassium carbonate
potassium hydrogencarbonate (bicarbonate)

Topic Chem 9 Q# 96/ iGCSE Chemistry/2014/w/Paper 33/Q1

1 (a) Bromine

Physical: reddish-brown liquid or brown liquid or volatile liquid/low boiling point liquid or poor/non-conductor (of electricity) or soluble in water or soluble in organic/non-polar solvents

[1]

Chemical: Reacts with water or reacts with iodides (in solution) or displaces iodine or reacts with alkenes/named alkene/unsaturated hydrocarbons or reacts with alkane in UV/named alkane in UV or valency/oxidation state(–)1 or forms Br or gains or shares 1 electron or combines or reacts with metals/named metal or combines or reacts with non-metals/named non-metal or oxidising agent or bleaches litmus paper/indicator paper or corrosive or forms acidic oxides

(c) Manganese

Physical: (good) conductor (of heat/electricity) or high melting point/high boiling point or forms coloured compounds/coloured ions or hard or strong or high density or malleable or ductile or sonorous or shiny

[1]

Chemical: Variable or different valency/oxidation state/oxidation number or catalytic activity or forms coloured compounds/coloured ions or forms complex ions/complexes or reacts with acids or reducing agent or reacts with non-metals

[1]

Topic Chem 9 Q# 97/ iGCSE Chemistry/2014/s/Paper 33/Q1

- (c) krypton (1) [1]
- (e) fluorine (1) [1]

Topic Chem 9 Q# 98/ iGCSE Chemistry/2014/s/Paper 32/Q6

6 (a) any three from:

(it would have) more than one or variable valency/oxidation state/oxidation number (1)

(metal/element/titanium/it has a) high density (1)

coloured compounds/ions/solutions (1)

form complex (ions) (1)

(element/compound act as) catalyst (1) [3]

Topic Chem 9 Q# 99/ iGCSE Chemistry/2014/s/Paper 32/Q1

1 (a) A and E need both (1)

[1]

(c) C(1)

[1]

(f) E (1)

[1]

MS Topic Chem 10 Q# 100/ iGCSE Chemistry/2015/w/Paper 33/Q6

		_
6(b)	Cu/copper and Rh/rhodium;	1
6(c)	Fe ₂ (SO ₄) ₃ ;	1
6(d)	Mg ²⁺ ;	1
6(e)	copper sulfate (solution); add manganese /Mn to solution; copper displaced or forms /blue colour changes; or (a solution of) an iron salt or a zinc salt, add copper and manganese to each; only manganese reacts /displaces; or (a solution of a) manganese salt and a copper salt; add, e.g. iron/zinc; copper (displaced) and manganese not; or to a (dilute) acid/any named acid/water / steam; add Mn and Cu / both metals to the liquid; rate faster or shorter time or more bubbles or more hydrogen or more gas with Mn or with the more reactive metal/reaction only with Mn or with the more reactive metal; or copper oxide; add manganese and heat; evidence of reaction; or bum manganese and copper/both elements; in air /oxygen; Mn or more reactive metal bums brighter/only Mn or more reactive metal bums/ evidence that manganese reacts faster; or add carbon; to both metal oxides and heat; evidence that reaction occurs with copper oxide more readily /least reactive metal oxide;	3

Patrick Brannac

or	
both metal nitrates or carbonates;	
heat:	
evidence that manganese compound is most stable/most reactive compound is most stable;	
or	
(electrochemical) cell/use of voltmeter/electrolyte;	
copper and manganese (as electrodes);	
manganese is the negative terminal:	

Topic Chem 10 **Q# 101/** iGCSE Chemistry/2015/w/Paper 32/Q5

5(a)	as a reducing agent; source of heat/energy;	2
5(b)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ species; balancing;	2
5(c)	silica reacts with limestone or calcium oxide; to form a slag or calcium silicate or CaSiO ₃ ; (liquid) slag floats (above molten iron);	3
5(d)	$\frac{\text{blow or pass oxygen through (molten) iron;}}{C + O_2 \rightarrow CO_2;}$ carbon dioxide escapes or carbon dioxide is a gas;	3

Topic Chem 10 **Q# 102/** iGCSE Chemistry/2015/w/Paper 32/Q3

3(a)	zinc blende is bumt/roasted/heated in air; zinc sulfide + oxygen → zinc oxide + sulfur dioxide;	2
3(b)	zinc oxide + carbon → zinc + carbon dioxide/monoxide;	1
3(d)(i)	copper;	1
3(d)(ii)	any two from: • hard(er)/less malleable; • strong(er); • (better) appearance; • (more) resistant to corrosion;	2
3(e)(i)	steel (or iron) is exposed to oxygen and water;	1
3(e)(ii)	Zn more reactive than Fe (allow steel); Zn loses/transfers electrons (more readily) and forms (+ve) ions (in preference to Fe); Fe (allow steel) is more reactive than Cu; Fe loses/transfers electrons (more readily) and forms (+ve) ions (in preference to Cu);	4

Topic Chem 10 **Q# 103/** iGCSE Chemistry/2015/w/Paper 32/Q3

|--|

Topic Chem 10 Q# 104/ iGCSE Chemistry/2015/s/Paper 33/Q6

6(a)(i)	$Al^{3+} + 3e \rightarrow Al$ formula of Al^{3+} ion; rest correct;	2	A multiples I state symbols A – 3e on right
6(a)(ii)	2O ²⁻ → O ₂ +4e species; balancing;	2	A multiples I state symbols A – 4e on left
6(a)(iii)	endothermic AND (electrical) energy supplied;	1	A energy required to break bonds
6(b)(i)	exothermic AND (electrical) energy release;	1	I heat energy
6(b)(ii)	magnesium forms ions (in solution) OR magnesium loses electrons OR magnesium is oxidised; copper is deposited (on the electrode) OR copper ions become copper atoms OR copper ions gain electrons OR copper ions are reduced;	2	A magnesium dissolves/goes into solution A equation (balanced or unbalanced) A equation (balanced or unbalanced) I use of terms anode or cathode
6(b)(iii)	M1 set up a magnesium/manganese cell; M2 the negative electrode (is the more reactive) OR the electrode that loses mass (is more reactive); OR M1 replace magnesium with manganese; M2 if voltage less (positive) manganese is less reactive OR if voltage is more (positive) manganese is more reactive;	2	A replace Cu with Mn A converse

Topic Chem 10 **Q# 105/** iGCSE Chemistry/2015/s/Paper 33/Q5

ı	5(a)	(CuCO ₃ →) CuO + CO ₂ ;		A multiples
		,		I state symbols
		$(Cu(OH)_2 \rightarrow) CuO + H_2O;$		
		(2Cu(NO ₅) ₂ →) 2CuO + (4NO ₂) + O ₂		
		species; balancing;	4	
ŀ				

5(b)(i)	(black to) pink/brown/orange;	1	I red
5(b)(ii)	(hot) copper reacts/is oxidised; with oxygen/air;	2	A forms copper oxide for 2 marks
5(b)(iii)	carbon monoxide/ammonia/methane;	1	
5(b)(iv)	carbon/graphite or any metal more reactive than copper;	1	

Topic Chem 10 Q# 106/ iGCSE Chemistry/2015/s/Paper 32/Q6

<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
6(b)(i)	$2NaNO_3 \rightarrow 2NaNO_2 + O_2$ species; balancing;	2	A multiples I state symbols/word equation
6(b)(iii)	the more reactive the metal the lower rate of decomposition/more difficult the decomposition/more stable the nitrate/more energy needed to decompose/ decomposes at higher temperature ora;	1	A less (extent the) decomposition A reactive metals produce nitrates difficult to decompose ora i.e. comparatives not essential A the more reactive the metal the less it decomposes is acceptable because we can assume that it refers to the nitrate BOD A inverse relationship with further qualification A group 1/reactive metals produce nitrite (and oxygen) and less reactive metals produce oxide (+ NO ₂ + O ₂) (both required for mark) I less products (unqualified) R less products/metals decompose
6(c)(i)	(changes from) blue solid/blue crystals; black solid formed; brown gas/brown vapour/(pungent) smell;	3	R precipitate A one mark out of the first two for changes from blue to black (without solid or crystals) I red/melt I water/steam/condensation given off I reference to glowing/burning splints/ colourless gas/effervescence I names/formulae

Topic Chem 10 Q# 107/ iGCSE Chemistry/2015/m/Paper 32/Q6

(d) (i) $Cu(OH)_2(s) \rightarrow CuO(s) + H_2O(g)$

1]		
,	1	1]	1]

State symbols of correct chemical equation [1]

Topic Chem 10 Q# 108/ iGCSE Chemistry/2015/m/Paper 32/Q5

- (c) improves conductivity / better conductor [1]
 - Lower (operating) temperature/save energy/saves electricity/saves heat [1]

(d) anode:
$$20^{2-} \rightarrow O_2 + 4e^{-}/20^{2-} - 4e^{-} \rightarrow O_2$$
 [1]

cathode:
$$Al^{3^+} + 3e^- \rightarrow Al / Al^{3^+} \rightarrow Al - 3e^-$$
 [1]

- (e) (i) Iron carbon aluminium/Fe, C, Al [1]
 - (ii) Aluminium oxide is not reduced by carbon but iron(III) oxide is [1]
- (f) haematite/hematite

- (g) Allow: multiples in (i) to (iv)
 - (i) $C + O_2 \rightarrow CO_2$

[1]

(ii) CO₂ + C → 2CO

- (iii) Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂ / Fe₂O₃ + 3C \rightarrow 2Fe + 3CO/ 2Fe₂O₃ + 3C \rightarrow 4Fe + 3CO₂

[1]

(iv) CaO + SiO₂ \rightarrow CaSiO₃ / CaCO₃ + SiO₂ \rightarrow CaSiO₃ + CO₂

[1]

Topic Chem 10 Q# 109/ iGCSE Chemistry/2014/w/Paper 33/Q6

(ii) SrCO₃ → SrO + CO₂

[1]

(c) (i) rubidium nitrite or nitrate(III)

[1]

(ii) 2Sr(NO₃)₂ → 2SrO + 4NO₂ + O₂ Species (1) Balancing (1) [2]

Topic Chem 10 Q# 110/ iGCSE Chemistry/2014/w/Paper 33/Q2

(iv) not horizontal or line slopes or line is lower

[1]

Topic Chem 10 Q# 111/ iGCSE Chemistry/2014/w/Paper 33/Q1

(b) Graphite

Chemical: reducing agent or reduces metal oxides/named metal oxide or reacts with/burns in air/oxygen or forms an acidic oxide (CO₂) or valency/oxidation state of 2 or 4

[1]

Topic Chem 10 Q# 112/ iGCSE Chemistry/2014/w/Paper 32/Q6

(ii) 2KNO₃ = 2KNO₂ + O₂ Species (1) [2]

Balance (1)

Topic Chem 10 Q# 113/ iGCSE Chemistry/2014/w/Paper 32/Q4

4 (a) M1 brass

[1]

M2 copper COND on M1

[1]

(b) (i) 2ZnS + 3O₂ → 2ZnO + 2SO₂ species (1) balancing (1) [2]

Topic Chem 10 Q# 114/ iGCSE Chemistry/2014/w/Paper 32/Q2

2 (a) $Al^{3+} + 3e^{-} \rightarrow Al$ species (1) balancing (1)

[2]

(b) (i) AlCl₃ + 3Na → 3NaCl + Al

species (1) balancing (1)

[2]

(c) (i) bauxite

[1]

- (ii) M1 aluminium oxide / amphoteric oxide dissolves OR iron(III) oxide / basic oxide does not [1]

M2 Filter COND on M1

[1]

(iii) Any two from:

Lowers (working) temperature or lowers mpt (of mixture) increases conductivity reduces cost OR energy need

- (d) (i) Has an impervious or non-porous or passive or unreactive or protective oxide layer [1]
 - (ii) Any two from:

good conductor of heat high melting point

Unreactive towards foods

[2]

Topic Chem 10 Q# 115/ iGCSE Chemistry/2014/s/Paper 33/Q7

- 7 (a) bauxite (1) [1]
 - (c) (i) food containers/window frames/cooking foil/cars/bikes/drink cans (1) [1]

Topic Chem 10 Q# 116/ iGCSE Chemistry/2014/s/Paper 33/Q4

(ii) any two of the oxides, C, S, P and Si, mentioned (1) carbon dioxide and sulfur dioxide escape/are gases (1)

phosphorus oxide **or** silicon(IV) oxide react with calcium oxide/ phosphorus oxide **or** silicon(IV) oxide are acidic and calcium oxide is basic (1)

to form a slag or calcium silicate or calcium phosphate (1)

must have correct equation for one of the above reactions (1)

[5]

(iii) carbon particles/atoms different size (1) prevents movement of rows, etc. (1)

[2]

MS Topic Chem 11 Q# 117/ iGCSE Chemistry/2015/w/Paper 33/Q1

1(c)	any two from: • filtration/sedimentation/sieving/screening/(pass through) gravel (beds)/flocculation/decantation/clarification/coagulation/flotation/settling tank/add aluminium sulfate; • (add) carbon; • chlorination/ (add) chlorine/add Cl ₂ ; • fluoridation/add fluoride; • ozone dosing; • desalination; • aeration; • distillation;	2
1(d)	any two from: making steel; making paper; textiles; generating electricity/energy/power/turbines; HEP; water mills; steam power (e.g. steam engines); geothermal power; agriculture; livestock; irrigation; hydration of alkenes/manufacture of ethanol/alcohols; manufacture of sulfuric acid/Contact process; manufacture of hydrogen; solvent/dissolving; coolant/cooling; cleaning/washing; (supply of) drinking (water); central heating; production of slaked lime; cooking;	2

Topic Chem 11 Q# 118/ iGCSE Chemistry/2015/w/Paper 32/Q2

2(a)(i)	combustion/burning of a motor vehicle fuel or a named fuel which can act as a motor vehicle fuel; incomplete combustion would produce CO; complete combustion would produce CO ₂ ;	3
2(a)(ii)	carbon dioxide: climate change/global warming/greenhouse effect; carbon monoxide: poisonous/toxic;	2
2(a)(iii)	nitrogen and oxygen react or combine; at high temperatures or in presence of spark;	2
2(a)(iv)	it reacts or combines with oxygen/NO + ½O₂ → NO₂;	1
2(b)	any two from:	2
2(c)	use of a catalytic converter; $2\text{NO} + 2\text{CO} \rightarrow 2\text{CO}_2 + \text{N}_2$ species; balancing;	3

Patrick Brannac

Topic Chem 11 Q# 119/ iGCSE Chemistry/2015/s/Paper 33/Q4

4(b)(i)	oxygen/air and sulfur (from fuel) react; (forms) sulfur (di)oxide;		A correct formulae throughout A sulfurous acid if sulfur reacts with oxygen and water	
	(sulfur dioxide) reacts with oxygen/air and water (to form sulfuric acid)			
	OR sulfur trioxide reacts with water (to form sulfuric acid)			
	OR sulfurous acid reacts with oxygen (to form sulfuric acid);	3		
4(b)(ii)	oxygen and nitrogen react;		A nitrogen combust R if oxygen or nitrogen originate from the	
	making oxides of nitrogen;		fuel	
	(oxides of nitrogen) react with water (making nitric acid);	3	A named oxide of nitrogen A correct formulae A NO _x	
4(b)(iii)	add sodium hydroxide (solution) and aluminium; (warm) and ammonia made;	2	A zinc or Devarda's A description of smell of ammonia or test for ammonia	

Topic Chem 11 Q# 120/ iGCSE Chemistry/2015/s/Paper 32/Q7

7(a)(i)	living/organism or named example e.g. yeast/cells/plants/animals/part of animal or plant e.g. muscle/humans/micro-organisms;		A 'we /us' for 'humans'
	produces/releases or gain or obtain energy/exothermic/heat;		
	from food/named foodstuff/carbohydrate/named carbohydrate/sugar/ named sugar/glucose/nutrients;	3	I products/breathing/oxygen/anaerobic/ aerobic
7(a)(ii)	Any 2 from 3: carbon dioxide/CO ₂ ; water/H ₂ O; adenosine triphosphate/ATP;	1	Lenergy

Topic Chem 11 Q# 121/ iGCSE Chemistry/2015/s/Paper 32/Q6

6(a)(i)	(Haber process makes) ammonia/NH ₃ ;		
	(ammonia converted into) fertilisers/nitrates/ammonium salts or names or formulae of examples e.g. ammonium nitrate/NH ₄ NO ₃ /ammonium sulfate/(NH ₄) ₂ SO ₄ /calcium nitrate/Ca(NO ₃) ₂ /urea/CO(NH ₂) ₂ ;	2	A 2 marks for 'ammonia is a fertiliser' A ammonia is used to make sodium nitrate Haber process used to make fertilisers gets second mark only
6(a)(ii)	it (refers to sodium nitrate)/sodium nitrate would dissolve (in rain)/soluble (in water)/wash away/leach/drain off;	1	A reacts with water I reference to fertiliser R sodium reacts/dissolves A because they are not dissolved by rainfall (implication is in desert)
6(a)(iii)	potassium (is required by plants as well as nitrogen)/ NPK;	1	R comments about pH/better for soil/%N higher/reactivity of potassium I comments about what K does for plants e.g. combat disease

Topic Chem 11 Q# 122/ iGCSE Chemistry/2015/s/Paper 32/Q4

4(a)	large surface area/large area of contact/large surface; more (successful) collisions (between catalyst and gases or between reacting gases) OR more active sites OR faster reaction/increase rate/increase speed:	2	I activation energy Second mark must be comparative	
4(b)	decrease temperature/temperature below 450 °C/quoted temperature below 450 °C; increase pressure/pressure above 200 atm/quoted pressure above 200 atm;	2	I comments about concentration I low temperature and high pressure. Both answers must be comparative I explanations	
4(c)	decreased <u>temperature</u> would reduce rate/reaction slow <u>er</u> /too slow; increased <u>pressure</u> expensive/uneconomic/safety risks/leaks/explosions/ yield or rate good enough at lower pressure/strong pipes needed/thick pipes needed/sturdy pipes needed/requires a lot of energy;	2	A takes longer I slow (unqualified) I answers that do not refer to decreased temperature and increased pressure e.g. it is too expensive unless this is linked with pressure	

Topi	c Che	em 11	L Q# 123/ iGCSE Chemistry/2015/m/Paper 32/Q3						
3		 a) (making) fertilisers/nitric acid/nylon/explosives/urea (for) cleaning products (allow oven cleaner)/refrigeration 							
	(b)	equ	uilibrium/reversible	[1]					
	(c)	(nit	(nitrogen)air/atmosphere						
			(hydrogen) methane/water/steam/alkane/named alkane/hydrocarbon/crude oil or petroleum/natural gas						
	(d)	iror		[1]					
	(e)	(i)	rate increases/faster	[1]					
			More (effective) collisions	[1]					
		(ii)	yield decreases	[1]					
			(forward reaction) exothermic/reverse reaction endothermic/high temp favours endothermic reaction	[1]					
	(f)	(i)	yield increases	[1]					
			less / fewer molecules or moles or volume on RHS ORA/ high pressure favours reaction which produces fewer molecules or moles or volume	[1]					
		(ii)	particles / molecules closer/more particles per unit area or volume/more molecules per unit area or volume/more concentration/particles have less space between them and more collisions	[1]					
		(iii)	safety issues/higher cost	[1]					
			Q# 124/ iGCSE Chemistry/2015/m/Paper 32/Q1	[1]					
(b) chlorine									
Topic Chem 11 Q# 125/ iGCSE Chemistry/2014/s/Paper 33/Q5 5 (a) faster reaction rate (1) higher collision rate (1) greater yield or favour RHS (1) pressure favours products because it has lower volume/fewer product molecules (1)									
	(b)	this	ner temperature favour endothermic reaction (1) is the back reaction/left hand side/reactants (1) uce yield (1)	[3]					
	(c)	(i)	greater surface area (1)	[1]					
		(ii)	increase reaction rate (1) can use a lower temperature to have an economic rate (1) and not decrease yield (by increasing temperature).	[2]					

(d) lower the temperature (1) only ammonia will liquefy (1) OR add water (1) only ammonia will dissolve (1) OR increase pressure (1) [2] only ammonia will liquefy (1) Topic Chem 11 Q# 126/ iGCSE Chemistry/2014/s/Paper 33/Q4 fractional distillation (1) liquid air (1) Topic Chem 11 Q# 127/ iGCSE Chemistry/2014/s/Paper 33/Q1 (a) carbon dioxide (1) [1] Topic Chem 11 Q# 128/ iGCSE Chemistry/2014/s/Paper 33/Q1 [1] (d) nitrogen (1) Topic Chem 11 Q# 129/ iGCSE Chemistry/2014/s/Paper 32/Q5 (a) (i) incomplete combustion or limited oxygen/less oxygen/not enough oxygen [1] Topic Chem 11 Q# 130/ iGCSE Chemistry/2014/s/Paper 32/Q3 (a) (i) pressure 150-300 atmospheres/atm (1) temperature accept in range 370 to 470 °C (1) iron (catalyst) (1) balanced equation $N_2 + 3H_2 = 2NH_3$ (1) equilibrium/reversible (1) [5] (ii) potassium/K (1) phosphorus/P (1) [2] (b) (i) burn fossil fuels/burn fuels containing sulfur/burn compounds containing sulfur/burn ores containing sulfur/roast metal sulfides/burn metal sulfides (1)sulfur dioxide/SO₂ (formed) (1) (form) sulfuric/H₂SO₄/sulfurous acid/H₂SO₃ (1) OR nitrogen and oxygen (in air) react at high temperatures/in jet engines/car engines/lightning. (1) (form) oxides of nitrogen (1) (form) nitric acid/HNO₃/nitrous acid/HNO₂ (1) [3]

Patrick Brannac

(ii) any two from:

limited or finite resource/non-renewable/will run out/depleted (1)

greenhouse effect/gas(es)/climate change/(cause) global warming (1)

acid rain (1)

production of poisonous/toxic gases (1)

[2]

MS Topic Chem 12 **Q# 132/** iGCSE Chemistry/2015/w/Paper 33/Q2

	2(a) sulfur dioxide /SO ₂ ;			1			
Topic Chem 12 Q# 133/ iGCSE Chemistry/2015/s/Paper 33/Q2							
	2(c)	sulfur dioxide:	1	A SO ₂			

Topic Chem 12 Q# 134/ iGCSE Chemistry/2014/w/Paper 32/Q6

6 (a) making fertilisers or pickling metals or making fibres or making phosphoric acid/phosphates making dyes or making paints/pigments/dyes or making paper making plastics or making detergents or tanning leather or battery acid. [1]

(ii) M1 Sulfur trioxide reacts with water to make sulfuric acid or equation [1]

M2 sulfur dioxide reacts with oxygen to form sulfur trioxide or equation [1]

Topic Chem 12 Q# 135/ iGCSE Chemistry/2014/w/Paper 32/Q4

(c) (i) sulfuric acid [1]

Topic Chem 12 **Q# 136/** iGCSE Chemistry/2014/s/Paper 33/Q1

(f) sulfur dioxide (1) [1]

MS Topic Chem 13 **Q# 137/** iGCSE Chemistry/2015/s/Paper 33/Q3

		l	
3(b)	$CaO + H_2O \rightarrow Ca(OH)_2$ reactants; product;	2	One mark for each side correct A multiples I state symbols
3(c)	M1 number of moles of CaCO ₃ = (12.5/100 =) 0.125 or 125000 OR 56/100 = 0.56; M2 mass calcium oxide = (0.125 × 56) = 7 (tonnes) OR 0.56 × 12.5 = 7;	2	Correct answer scores both marks A answers in g or kg
3(d)(i)	Any two from: does not wash away/insoluble/lasts a long time; does not increase pH above 7/neutral/has pH 7; naturally occurring/ does not need to be processed;	2	A does not leach out
3(d)(ii)	Any three from: (flue gas contains) sulfur dioxide; flue gas/sulfur dioxide is acidic; calcium carbonate reacts with sulfur dioxide; to make a salt/calcium sulfite OR neutralisation;	3	A CaCO ₃ is a base
3(d)(iii)	making steel or iron/in a <u>blast</u> furnace/toothpaste/(making) glass/building/ (making) cement/treating acidic river or lakes/ chalk;	1	

Topic Chem 13 Q# 138/ iGCSE Chemistry/2014/s/Paper 33/Q4

4 (a) (i) heat limestone/calcium carbonate (1)

Topic Chem 13 Q# 139/ iGCSE Chemistry/2014/s/Paper 32/Q3

(ii) any two from:

calcium oxide/lime/quicklime/CaO (1) calcium hydroxide/Ca(OH)₂/lime/slaked lime/limewater (1) calcium carbonate/CaCO₃/limestone/chalk/marble (1)

guidance: 'lime' can only be credited once.

MS Topic Chem 14 **Q# 140/** iGCSE Chemistry/2015/w/Paper 33/Q4

4(a)(i)	any three from: • (same) general (molecular) formula; • (consecutive members) differ by CH ₂ ; • same functional group; • common (allow similar) methods of preparation; • same/similar chemical properties/(chemical) reactions;	3
4(a)(ii)	C _n H _{2n} alkene; C _n H _{2n+2} alkane;	1
4(a)(iii)	alkanes <u>all</u> or <u>only</u> (C–C) single bonds/no double bonds/no multiple bonds; alkenes (at least one) C=C/double bond/multiple bond;	1
4(b)(i)	heat/high temperature/temperature between 450 °C and 800 °C; catalyst/named catalyst, e.g. zeolites or alumina or aluminium oxide or aluminosilicates or silica or oxides of chromium; or high pressure/pressure in range of 2–70 atm; or steam; absence of air/oxygen;	2
4(b)(ii)	any correct equation producing an alkane and an alkene adding up to seven carbon atoms in the products;	1
4(b)(iii)	any correct equation producing two alkenes and hydrogen, e.g. → C ₂ H ₄ + C ₅ H ₁₀ + H ₂ /C ₃ H ₆ + C ₄ H ₈ + H ₂ ;	1
4(b)(iv)	alkenes: more useful than alkanes/used to make polymers or plastics/used to make chemicals/petrochemicals; or alkanes: (balance the demand for different) fuels/increase petrol (fraction) or hydrogen/produce lighter fractions from heavier fractions or suitable example, e.g. naphtha to gasoline/more useful smaller molecules or more demand for smaller molecules or more demand for smaller fractions/used as fuel/used to make ammonia/used in Haber process/used in hydrogenation of vegetable oils/used to make HCl;	1

Topic Chem 14 Q# 141/ iGCSE Chemistry/2015/w/Paper 33/Q2

			4
2(c)	ethene/C ₂ H ₄ ;	1	
2(f)	methane/CH ₄ ;	[1 [ĺ

Topic Chem 14 Q# 142/ iGCSE Chemistry/2015/w/Paper 32/Q4

	111 14 Q11 142/ 10052 Chemistry/2015/W/1 aper 52/Q4	
4(a)(ii)	CH ₃ CHC/ICH ₃ ;	1
4(a)(iii)	(both have) same molecular formula; different structural formula or structure;	2
4(c)(i)	$CH_3CH_2CI_2CI + NaOH \rightarrow CH_3CH_2CI_2CI + NaCI$ NaCI as product; rest of equation;	2
4(c)(ii)	propene; CH ₂ =CHCH ₃ ;	2
4(c)(iii)	propanoic acid;	1

Topic Chem 14 **Q# 143/** iGCSE Chemistry/2015/s/Paper 33/Q7

7(a)(i)	alkenes have a (carbon to carbon) double bond;	1	A "they" for alkenes A alkanes do not have a (carbon to carbon) double bond
7(a)(ii)	alkene; C _n H _{2n} or twice as many hydrogen atoms as carbon atoms;	2	A fits general formula for alkenes
7(a)(iii)	add bromine (water); remains brown/orange/yellow/no change; becomes colourless/decolourised;	3	I red A M2 and M3 only available if M1 correct or close (such as bromide or bromination) I clear
7(b)(i)			
	correct structure with at least two carbons and single C-C bond; continuation bonds with at least 2 carbon atoms in chain; two or more correct repeat units (with correct use of n, if used) OR correct use of n;	3	I incorrect additional units R any incorrect units or non-integral number of repeat units
7(b)(ii)	CH ₃ -CH=CH-CH ₅ ;	2	A award 1 mark for any monomer with C=C as long as both carbons have the correct valency I names

7(b)(iii)	one from: addition polymerisation polymer only product; addition polymerisation same functional group in all monomers or C=C in monomers; addition polymer has same empirical formula as monomer,		A only one monomer
	one from: condensation makes (polymer and) simple/small molecule OR water OR hydrogen chloride; condensation polymerisation monomers have two (different) functional groups;	2	A (normally two) different monomers
7(b)(iv)	polyester/polyamide;	1	A protein/polysaccharide/polypeptide/ complex carbohydrate I names
 Γορίς Cher	n 14 Q# 144/ iGCSE Chemistry/2015/s/Paper 33/Q6	-	-
6(d)(i)	(light from the) sun/sunlight;	1	A uv
6(d)(ii)	carbon dioxide + water → glucose + oxygen;	1	A starch/sugar/(named)carbohydrate I energy or light on LHS
Topic Cher	n 14 Q# 145/ iGCSE Chemistry/2015/s/Paper 33/Q4		
4(a)(i)	Any one fossil fuel from: crude oil/petroleum/natural gas/methane/petrol/gasoline/kerosene/ paraffin/diesel (oil)/gas oil/fuel oil/refinery gas/LPG/propane/butane;	1	I ethane/oil/naphtha/coal/gas R coke/bitumen/lubricating oil/wood
4(a)(ii)	(burn to) release energy; take a long time to form (from organic material);	2	If time stated 1000 years or more
I———— Topic Cher	n 14 Q# 146/ iGCSE Chemistry/2015/s/Paper 32/Q7	 -	in time stated root jede on mee
7(c)	Any two from:		I medicine (unqualified)/chemical feedstock
7.0	fuel; OR petrol additive; OR solvent/tinctures; OR (making) perfumes; OR vamishes; OR preserving biological specimens/preserving food; OR essence/flavourings; OR antiseptic/kill bacteria (in medicine)/sterilizer; OR antitussive agent; OR (in) disinfectant/hand sanitizer; OR to make esters/esterification; OR to make ether(s); OR to make amines; OR to make carboxylic acid(s)/vinegar/ethanoic acid; OR thermometers; OR alcohol lamp/spirit bumers; OR any other suitable use;	2	
7(d)			I fractional distillation / distillation wherever mentioned
	cracking/crack;		I catalytic/thermal + other conditions
	(hexane to obtain) ethene/ C ₂ H ₄ ;		Ethene / C ₂ H ₄ can be given in either equation whether the equation is otherwise correct or not
	$C_6H_{14} \rightarrow C_2H_4 + C_4H_{10};$		I state symbols A multiples/ other equations e.g. $C_6H_{14} \rightarrow 3C_2H_4 + H_2$ $C_6H_{14} \rightarrow 2C_2H_4 + C_2H_6$ $C_6H_{14} \rightarrow C_2H_4 + C_4H_8 + H_2$ A any correct equations in which carbon is produced e.g. $C_6H_{14} \rightarrow 2C_2H_4 + 2C + 3H_2$
	hydration (of ethene)/ hydrate/hydrated or add(ition of) water/ add(ition of) steam/ addition;		A additional I conditions / react with water
	$C_2H_4 + H_2O \rightarrow C_2H_5OH$;	5	I C ₂ H ₆ O /state symbols A multiples

Topic Chem 14 **Q# 147/** iGCSE Chemistry/2015/m/Paper 32/Q7

7 (a) Any two from:

yeast/20-40 °C/anaerobic or without oxygen or without air/(aqueous) solution or water or aqueous

(c) (i) Crude oil/petroleum

(ii) $C_2H_4 + H_2O \rightarrow C_2H_5OH / CH_3CH_2OH$

[2]

Topic Chem 14 Q# 148/ iGCSE Chemistry/2015/m/Paper 32/Q4

4 (a) (i) 82.76/12 and 17.2(4)(/1)

or evaluation: 6.89 / 6.9(0) and 17.2(4)

[1]

C2H5

[1]

OR

 $82.76/100 \times 58 = 48$ and $17.24/100 \times 58 = 10$ or evaluation i.e. 48 and 10

[1]

C2H5

[1]

(ii) (C₂H₅ =) 29

[1]

(58/29 = 2) C₄H₁₀

[1]

OR:

 $82.76/100 \times 58 = 48$ and $17.24/100 \times 58 = 10$ or evaluation i.e. 48 and 10

[1]

48/12 = 4 10/1 = 10 (therefore) C₄H₁₀

[1]

(b) (i) C_nH_{2n}

[1]

(ii) CH₂

[1]

(c) (contains) double bond/triple bond/multiple bond(s)/not all bonds are single

[1]

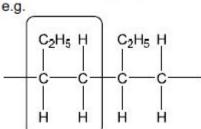
(contains) carbon and hydrogen only

[1]

(d) bromine/bromine water

[1]

no change/stays brown/orange/yellow/red-brown or only changes in UV


[1]

(brown/orange/yellow) to colourless/decolourised

[1]

(e) (i) circle/brackets around any 2 consecutive carbon atoms in the main chain and all attached atoms

[1]

(ii) CH₃CH₂CH=CH₂ / C₂H₅CH=CH₂ (double bond must be shown)

[1]

butene/but-1-ene

[1]

(iii) (CH₃)₂C=CH₂ / CH₃CH=CHCH₃ / (CH₂)₂CHCH₃ / (CH₂)₄

[1]

[Total:15]

Page 112 of 294

Topic Chem 14 Q# 149/ iGCSE Chemistry/2015/m/Paper 32/Q4

4 (a) (i) 82.76/12 and 17.2(4)(/1)

or evaluation: 6.89 / 6.9(0) and 17.2(4)

[1]

C₂H₅

[1]

OR

82.76/100 × 58 = 48 and 17.24/100 × 58 = 10 or evaluation i.e. 48 and 10

[1]

C₂H₅

[1]

(ii) (C₂H₅ =) 29

[1]

(58/29 = 2) C₄H₁₀

[1]

OR:

 $82.76/100 \times 58 = 48$ and $17.24/100 \times 58 = 10$ or evaluation i.e. 48 and 10

[1]

48/12 = 4 10/1 = 10 (therefore) C₄H₁₀

[1]

(b) (i) C_nH_{2n}

[1]

(ii) CH₂

[1]

(c) (contains) double bond/triple bond/multiple bond(s)/not all bonds are single

[1]

(contains) carbon and hydrogen only

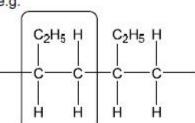
[1]

(d) bromine/bromine water

[1]

no change/stays brown/orange/yellow/red-brown or only changes in UV

[1]


(brown/orange/yellow) to colourless/decolourised

[1]

(e) (i) circle/brackets around any 2 consecutive carbon atoms in the main chain and all attached atoms

[1]

e.g.

(ii) CH₃CH₂CH=CH₂ / C₂H₅CH=CH₂ (double bond must be shown)

[1]

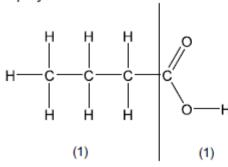
butene/but-1-ene

[1]

(iii) (CH₃)₂C=CH₂ / CH₃CH=CHCH₃ / (CH₂)₂CHCH₃ / (CH₂)₄

[1]

[Total:15]


Topic Chem 14 Q# 150/ iGCSE Chemistry/2014/w/Paper 33/Q7

7 (a) (i) butanoic acid/butyric acid

[1]

displayed formula below

[2]

(ii) any three from:

same or similar chemical properties
(same) general (molecular) formula
(consecutive members) differ by CH₂
same functional group
common methods of preparation
physical properties vary in predictable manner/show trends/gradually change
or example of a physical property variation i.e. melting point/boiling
point/volatility

[3]

(b) (i) methyl propanoate

[1]

CH3CH2COOCH3/CH3CH2CO2CH3/C2H5COOCH3/C2H5CO2CH3

[1]

(ii) methyl ethanoate

[1]

(c) (i)
$$3C_4H_{10} + 5\frac{1}{2}O_2 \rightarrow 4C_2H_5COOH + 3H_2O$$

[1]

(ii) propanol or propan-1-ol or propanal

[1]

[Total: 14]

Topic Chem 14 Q# 151/ iGCSE Chemistry/2014/w/Paper 32/Q5

5 (a) (i) M1 Contain carbon, hydrogen and oxygen (only)

[1]

M2 hydrogen and oxygen is in a 2:1 ratio (or in the same ratio as water)

[1]

(ii) M1 -O-linkage

[1]

M2 3 monomer units with 3 blocks and 3 Oxygen atoms Cond

[1]

3 (a) (i) C₄H₈ only CH₂ (Allow C₄)

 CH_2 (Allow C_1H_2) [2]

- (ii) Any unambiguous structural formula of methyl cyclopropane or but-1-ene or but-2-ene or methyl propene [1]
- (iii) M1 same molecular formula [1]

M2 different structural formulae or different structures
or different arrangement of atoms [1]

(iv) If 'No':

one an alkane, the other an alkene

10

one is saturated / has single bonds, the other is unsaturated / has a double bond ignore: references to the 'functional group'

If 'yes'

both alkanes or both saturated

ignore: references to the 'functional group'

[1]

(b) (i) M1 Action of heat or catalyst or thermal decomposition (on an alkane) [1] Ignore steam. Ignore pressure.

M2 Long-chained molecules or alkanes form smaller molecules (not smaller fraction) or forms smaller alkenes (or alkanes) [1]

- (ii) C₁₀H₂₂ [1]
- (c) (i) M1 Correct structure of one repeat unit [1]
 - M2 Continuation bonds COND on M1 [1]
 - M3 use of brackets and subscript 'n' COND on M1 and M2 [1]

$$\begin{array}{c|c}
 & H & H \\
\hline
 & C & C \\
\hline
 & C & C$$

(ii) dibromoethane or 1,2-dibromoethane [1]

6 (a) (i) C and H only (1)

[1]

(ii) only single bonds (1)

[1]

(b) (i) $C_nH_{2n+2}(1)$

[1]

(ii) $C_{14}H_{30}(1)$ $(14 \times 12) + 30 = 198(g)(1)$

[2]

(c) (i) $C_9H_{20} + 14 O_2 \rightarrow 9CO_2 + 10H_2O$ (2)

[2]

(ii) Volume ratio

[3]

for equation as above (2)

(d) (i) alkanes in petrol/fuel/solvent (1)

alkenes to make alcohols/plastics/polymers/solvents (1) hydrogen to make ammonia/fuel/fuel cells, etc. (1)

[3]

(ii) a correct equation for example:

$$C_{10}H_{22} \rightarrow C_8H_{16} + C_2H_4 + H_2 (1)$$

[1]

(e) (i) light or lead tetraethyl/catalyst/high temperature (1)

[1]

(ii) CH₃-CHCl-CH₃ (1)

[1]

[Total: 16]

Topic Chem 14 Q# 154/ iGCSE Chemistry/2014/s/Paper 33/Q3

(b) correct linkage (1)
 rest of molecule correct and continuation shown (1)
 (other product is) water (1)

[3]

Topic Chem 14 Q# 155/ iGCSE Chemistry/2014/s/Paper 33/Q1

(b) propene (1)

[1]

Topic Chem 14 Q# 156/ iGCSE Chemistry/2014/s/Paper 32/Q4 4 (a) (i) butanoic/butyric acid (1) CH₃CH₂CH₂COOH / C₂H₅CH₂COOH (1) (ii) any three from: (same) general formula (1) (consecutive members) differ by CH₂ (1) same functional group (1) common methods of preparation (1) physical properties vary in predictable manner/show trends/gradually or example of a physical property variation i.e. melting point/boiling point/ volatility (1) (b) (i) displayed formula of propan-1-ol, all bonds shown separately (1) (ii) acidified (1) potassium manganate(VII)/potassium permanganate/KMnO4 or potassium dichromate(VI)/K2Cr2O7/potassium dichromate (1) (c) (i) zinc + propanoic acid → zinc propanoate (+ hydrogen) (1) (ii) calcium oxide + propanoic acid → calcium propanoate + water (1) (iii) LiOH + CH₃CH₂ COOH → CH₃CH₂COOLi + H₂O (1) Topic Chem 14 Q# 157/ iGCSE Chemistry/2014/s/Paper 32/Q2 (a) (i) substance/material/compound/element/mixture (burnt) to produce/release energy or heat (1) (ii) Any two from: coal coke peat petroleum/ crude oil refinery gas/LPG gasoline/petrol naptha kerosene/paraffin diesel (oil)/gas oil fuel oil propane butane

(iii) wood/charcoal/animal dung/biomass/Uranium/U/plutonium/Pu (1) [1]

(b) (i) any two from:

water/steam/water vapour/H₂O (1) carbon dioxide/CO₂ (1) carbon monoxide/CO (1)

[2]

[3]

[1]

[2]

[1]

[1]

[1]

[1]

[2]

Section 2: Past Exam Questions Covering Topics 8, 10, 11, 12 13 And 14 iG Chem 8 EQ P3 Acids, bases and salts 15w to 01s NEW 188marks

8. Acids, bases and salts

8.1 The characteristic properties of acids and bases Core

- Describe the characteristic properties of acids as reactions with metals, bases, carbonates and effect on litmus and methyl orange
- Describe the characteristic properties of bases as reactions with acids and with ammonium salts and effect on litmus and methyl orange
- Describe neutrality and relative acidity and alkalinity in terms of pH measured using Universal Indicator paper (whole numbers only)
- Describe and explain the importance of controlling acidity in soil

Supplement

- Define acids and bases in terms of proton transfer, limited to aqueous solutions
- Describe the meaning of weak and strong acids and bases

8.2 Types of oxides

Core

 Classify oxides as either acidic or basic, related to metallic and non-metallic character

Supplement

 Further classify other oxides as neutral or amphoteric

8.3 Preparation of salts

Core

 Demonstrate knowledge and understanding of preparation, separation and purification of salts as examples of some of the techniques specified in section 2.2.2 and the reactions specified in section 8.1

Supplement

- Demonstrating knowledge and understanding of the preparation of insoluble salts by precipitation
- Suggest a method of making a given salt from a suitable starting material, given appropriate information

8.4 Identification of ions and gases

Core

Describe the following tests to identify:

aqueous cations:

aluminium, ammonium, calcium, chromium(III), copper(II), iron(II), iron(III) and zinc (using aqueous sodium hydroxide and aqueous ammonia as appropriate) (Formulae of complex ions are **not** required.)

cations:

use of the flame test to identify lithium, sodium, potassium and copper(II)

anions

carbonate (by reaction with dilute acid and then limewater), chloride, bromide and iodide (by reaction under acidic conditions with aqueous silver nitrate), nitrate (by reduction with aluminium), sulfate (by reaction under acidic conditions with aqueous barium ions) and sulfite (by reaction with dilute acids and then aqueous potassium manganate(VII))

gases:

ammonia (using damp red litmus paper), carbon dioxide (using limewater), chlorine (using damp litmus paper), hydrogen (using lighted splint), oxygen (using a glowing splint), and sulfur dioxide (using aqueous potassium manganate(VII))

Tests for ions (Topic 8)

Tests for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>1</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
bromide (Br ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	cream ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate (NO ₃ -) [in solution]	add aqueous sodium hydroxide, then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify, then add aqueous barium nitrate	white ppt.
sulfite (SO ₃ ²⁻)	add dilute hydrochloric acid, warm gently and test for the presence of sulfur dioxide	sulfur dioxide produced will turn acidified aqueous potassium manganate(VII) from purple to colourless

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (A l^{3+})	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ +)	ammonia produced on warming	-
calcium (Ca ²⁺)	white ppt., insoluble in excess	no ppt. or very slight white ppt.
chromium(III) (Cr ³⁺)	green ppt., soluble in excess	grey-green ppt., insoluble in excess
copper (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess, giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess, giving a colourless solution

Tests for gases

gas	test and test result
ammonia (NH ₃)	turns damp, red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint
sulfur dioxide (SO ₃)	turns acidified aqueous potassium manganate(VII) from purple to colourless

Flame tests for metal ions

metal ion	flame colour
lithium (Li ⁺)	red
sodium (Na ⁺)	yellow
potassium (K+)	lilac
copper(II) (Cu2+)	blue-green

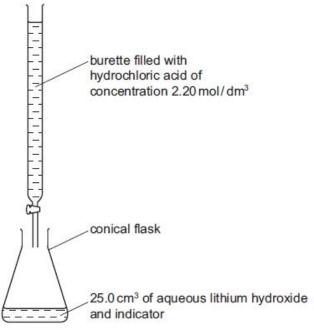
Q# 1/	iGCSF	Chemistry	/2015	/w	/Paper	31/	/
Q'' 1/	IUCJE	CHCHINSTI Y	/ 2010	, vv.	, i apci	21/	

and explain why this method works. (d) Magnesium hydroxide from a mixture of magnesium hydroxide and zinc hydroxide. explanation [3] Q# 2/ iGCSE Chemistry/2015/s/Paper 31/ Acid-base reactions are examples of proton transfer. (a) Ethylamine is a weak base and sodium hydroxide is a strong base. In terms of proton transfer, explain what is meant by the term weak base. [2] (ii) Given aqueous solutions of both bases, describe how you could show that sodium hydroxide is the stronger base. How could you ensure a 'fair' comparison between the two solutions?[3] (b) Ethylamine reacts with acids to form salts. CH₃CH₂NH₂ + HC1 → CH₃CH₂NH₃C1 (i) Complete the equation for the reaction between sulfuric acid and ethylamine. Name the salt formed.CH₃CH₂NH₂ + → name of salt [3] Amines and their salts have similar chemical properties to ammonia and ammonium salts. Suggest a reagent that could be used to displace the weak base, ethylamine, from its salt ethylammonium chloride.

Describe how to separate the following. In each example, give a description of the procedure used

3/	IGO	CSE Chemistry/2014/w/Paper 31/								
(a) Match the following pH values to the solutions given below.				below.						
			1	3	7	10	13			
		The solutions all have the same concentration.								
		solution				pH	Ď.			
		aqueous ammonia, a we	eak bas	е			<u></u>			
		dilute hydrochloric acid,	a stron	g acid						
		aqueous sodium hydrox	ide, a s	trong l	oase					
		aqueous sodium chlorid	e, a sal	t			***			
		dilute ethanoic acid, a w	eak aci	d			<u></u>			
								[5]		
	(b)	Explain why solutions o mol/dm³, have a differe		chloric	acid a	nd etha	noic acid with the same concentrat	ion, in		
	(c)						a strong acid and a weak acid.	[2]		
	Describe another method.									
	method									
		B								
		results								
								[2]		
4/		CSE Chemistry/2014/s/Pape Across a period, the ele	-	change	e from	metallic	to non-metallic.			
	(i) Describe how the type of oxide changes across this period.									
								[2]		
5/	Am	CSE Chemistry/2013/s/Pape nmonia is a compound ak base.		only c	ontain	s the e	ements nitrogen and hydrogen. I	t is a		
	(a)	(i) Define the term be	ase.							

Q#


Q#

	(ii)	Given aqueous solutions of ammonia and sodium hydroxide, both having a concentration of 0.1 mol/dm ³ , how could you show that ammonia is the weaker base?
Q# 6/ 2 A		nemistry/2013/s/Paper 31/ ent, M , has the electron distribution 2 + 8 + 18 + 3.
(e)	_	ydroxide of M is a white powder which is insoluble in water. be how you could show that this hydroxide is amphoteric.
		[2]

Q# 7/ iGCSE Chemistry/2013/s/Paper 31/

Patrick Brannac

- 7 The hydroxides of the Group I metals are soluble in water. Most other metal hydroxides are insoluble in water.
 - (a) (i) Crystals of lithium chloride can be prepared from lithium hydroxide by titration.

25.0 cm³ of aqueous lithium hydroxide is pipetted into the conical flask. A few drops of an indicator are added. Dilute hydrochloric acid is added slowly to the alkali until the indicator just changes colour. The volume of acid needed to neutralise the lithium hydroxide is noted.

A neutral solution of lithium chloride, which still contains the indicator, is left. Describe how you could obtain a neutral solution of lithium chloride which does **not** contain an indicator.

		escribe how you could prepare a neutral solution of magnesium chloride	
			[3]
b)	to ne	oncentration of the hydrochloric acid was 2.20 mol/dm³. The volume of acutralise the 25.0 cm³ of lithium hydroxide was 20.0 cm³. Calculate the cone aqueous lithium hydroxide.	
		LiOH + HC1 → LiC1 + H ₂ O	
			[2]
c)	Which	m chloride forms three hydrates. They are LiC1.H ₂ O, LiC1.2H ₂ O and I one of these three hydrates contains 45.9% of water? how you arrived at your answer.	LiC <i>1</i> .3H ₂ O.
3/	iGCSE	Chemistry/2012/w/Paper 31/ Q7	[3]
(b	_	ontium chloride-6-water can be made from the insoluble comp bonate, by the following reactions.	ound, strontiur
	SrC	$CO_3(s) + 2HCl(aq) \rightarrow SrCl_2(aq) + CO_2(g) + H_2O(l)$	
	SrC	$Cl_2(aq) + 6H_2O(I) \rightarrow SrCl_2.6H_2O(S)$	
	The	e following method was used to prepare the crystals.	
		Add excess strontium carbonate to hot hydrochloric acid.	
		2 Filter the resulting mixture.	
		Partially evaporate the filtrate and allow to cool.	
		4 Filter off the crystals of $SrCl_2.6H_2O$.	

	(ii)	Why is it necessary to filter the mixture in step 2?	
			[1]
	(iii)	In step 3, why partially evaporate the filtrate rather than evaporate to dryness?	
•			[1]
Q# 9/ 4	Silic	E Chemistry/2012/w/Paper 31/ $_{\rm cn}({ m IV})$ oxide, ${ m ZrO_2}$, are both macromolecules. And ${ m ZrO_2}$ have similar physical properties but silicon(${ m IV}$) oxide is acidic and zirconium(${ m IV}$) oxinphoteric.	de
(c)	(i)	Name a reagent that reacts with the oxides of both elements.	
			[1]
	(ii)	Name a reagent that reacts with only one of the oxides.	
		reagent	
		oxide which reacts	[2]
Q# 10/	iGCS	E Chemistry/2012/s/Paper 31/	
2	Thre	ee ways of making salts are	
		titration using a soluble base or carbonate neutralisation using an insoluble base or carbonate precipitation.	
	(a)	Complete the following table of salt preparations.	

titration		 sodium nitrate	
neutralisation	nitric acid	 copper(II) nitrate	

reagent 2

reagent 1

neutralisation sulfuric acid zinc(II) carbonate

(b) (i) Write an ionic equation with state symbols for the preparation of silver(I) chloride.

SMASHING !!!

[6]

method

precipitation

salt

silver(I) chloride


	(ii)	Complete the following equation.
		$ZnCO_3 + H_2SO_4 \rightarrow \dots + \dots + \dots$ [2]
Q# 11/	iGCSE Ch	nemistry/2011/w/Paper 31/ Q5
(c)	Descr	ibe how you could test the solution to find out which ion, Fe ²⁺ or Fe ³⁺ , is present.
		[3]
Q# 12/	iGCSE Ch	nemistry/2011/w/Paper 31/
1	This qu	estion is concerned with the following oxides.
		sulfur dioxide
		carbon monoxide
		lithium oxide
		aluminium oxide
		nitrogen dioxide
		strontium oxide
	(a) (i)	Which of the above oxides will react with hydrochloric acid but not with aqueous sodium hydroxide?
		[1]
	(ii)	Which of the above oxides will react with aqueous sodium hydroxide but not with hydrochloric acid?
		[1]
	(iii)	Which of the above oxides will react with both hydrochloric acid and aqueous sodium hydroxide?
		[1]
		[-]
	(iv)	Which of the above oxides will not react with hydrochloric acid or with aqueous sodium hydroxide?
		[1]
Q# 13/	iGCSE Ch	nemistry/2011/s/Paper 31/ Q5
(d)	20.0 cm	n³ of aqueous sodium hydroxide, 2.00 mol/dm³, was placed in a beaker. The
	tempera	ature of the alkali was measured and 1.0 cm ³ portions of hydriodic acid were

Patrick Brannac

are shown on the graph.

added. After each addition, the temperature of the mixture was measured. Typical results

$$NaOH(aq) + HI(aq) \rightarrow NaI(aq) + H2O(l)$$

(iii)	In another experiment, it was shown that 15.0 cm3 of the acid neutralised 20.0 cm3 of
	aqueous sodium hydroxide, 1.00 mol/dm3. Calculate the concentration of the acid.

ເວາ

Q# 14/ iGCSE Chemistry/2011/s/Paper 31/ Q2

(c) The selenide ion reacts with water.

$$Se^{2-} + H_2O \rightarrow HSe^- + OH^-$$

What type of reagent is the selenide ion in this reaction? Give a reason for your choice.

_____[3]

Q# 15/ iGCSE Chemistry/2011/s/Paper 31/ NOT w/ith Q5(a)

- 5 (a) (i) $2Li + 2HI \rightarrow 2LiI + H_2$
 - (ii) zinc carbonate + hydriodic acid ightarrow zinc iodide + carbon dioxide + water
 - (iii) MgO + 2HI → MgI₂ + H₂O
 - (b) Two of the reactions in (a) are acid/base and one is redox. Which one is redox? Explain your choice.

ro.

Q# 16/ iGCSE Chemistry/2011/s/Paper 31/

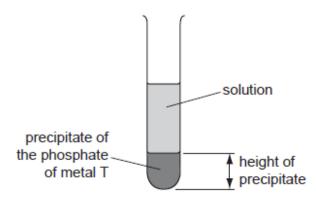
- 5 Hydriodic acid, HI(aq), is a strong acid. Its salts are iodides.
 - (a) It has the reactions of a typical strong acid. Complete the following equations.
 - (i)+ +

		(ii) zinc + hydriodic ++ ++ ++ carbonate + acid ++	
			[1]
	(iii) MgO + +	[1]
Q# 17/	iGCS	SE Chemistry/2010/w/Paper 31/ Q6	
(b)	Ве	eryllium hydroxide, a white solid, is an amphoteric hydroxide.	
	(i)	Name another metal which has an amphoteric hydroxide.	
			[1]
	(ii)	Suggest what you would observe when an excess of aqueous sodium hydradded gradually to aqueous beryllium sulfate.	
		SE Chemistry/2010/w/Paper 31/	
8 Soluble salts can be made using a base and an acid.			
(a) Complete this method of preparing dry crystals of the soluble salt cobalt(II) chloride-6-water from the insoluble base cobalt(II) carbonate			
		Step 1 Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.	
		Step 2	
		Step 3	
		Step 4	
			[4]

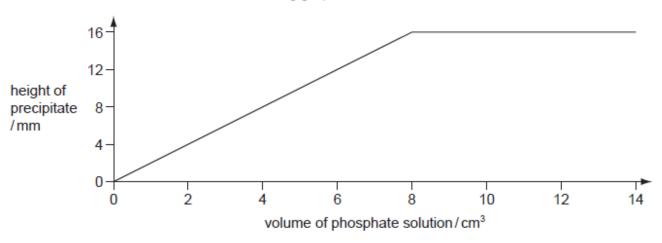
Q# 19/ iGCSE Chemistry/2009/w/Paper 3/

- 2 Oxides are classified as acidic, basic, neutral and amphoteric.
 - (a) Complete the table.

type of oxide	pH of solution of oxide	example
acidic		
basic		
neutral		


[6] (b) (i) Explain the term amphoteric. [1] (ii) Name two reagents that are needed to show that an oxide is amphoteric. [2] Q# 20/ iGCSE Chemistry/2009/s/Paper 31/ Q7 (b) They react with water to form acidic solutions. $HCI + H_2O \rightleftharpoons H_3O + CI^-$ HF + H₂O
→ H₃O+ + F⁻ Explain why water behaves as a base in both of these reactions. [2] (ii) At equilibrium, only 1% of the hydrogen chloride exists as molecules, the rest has formed ions. In the other equilibrium, 97% of the hydrogen fluoride exists as molecules, only 3% has formed ions. What does this tell you about the strength of each acid?

(iii) How would the pH of these two solutions differ?


[2]

(b) The formulae of insoluble compounds can be found by precipitation reactions.

To 12.0 cm³ of an aqueous solution of the nitrate of metal T was added 2.0 cm³ of aqueous sodium phosphate, Na₃PO₄. The concentration of both solutions was 1.00 mol/dm³. When the precipitate had settled, its height was measured.

The experiment was repeated using different volumes of the phosphate solution. The results are shown on the following graph.

What is the formula of the phosphate of metal T? Give your reasoning.

[3]

Q# 22/ iGCSE Chemistry/2009/s/Paper 31/

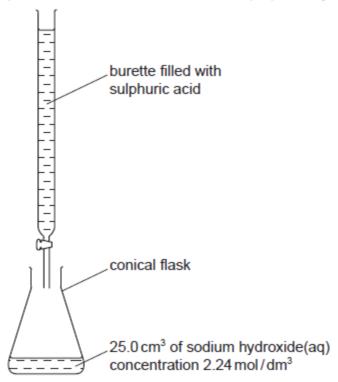
- 5 Insoluble salts are made by precipitation.
 - (a) A preparation of the insoluble salt calcium fluoride is described below.

To $15~\text{cm}^3$ of aqueous calcium chloride, $30~\text{cm}^3$ of aqueous sodium fluoride is added. The concentration of both solutions is 1.00~mol / dm^3 . The mixture is filtered and the precipitate washed with distilled water. Finally, the precipitate is heated in an oven.

(i) Complete the equation.

(ii)	Why is the volume of sodium fluoride solution double that of the calcium chlor solution?	ide
		[1]
(iii)	Why is the mixture washed with distilled water?	
		.
		[1]
(iv)	Why is the solid heated?	
		[1]

Q# 23/ iGCSE Chemistry/2008/w/Paper 31/


Complete the following table.

gas	test for gas
ammonia	
	bleaches damp litmus paper
hydrogen	
	relights a glowing splint
	tums limewater milky

[Total: 5]

7 Crystals of sodium sulphate-10-water, Na₂SO₄.10H₂O, are prepared by titration.

(a) 25.0 cm³ of aqueous sodium hydroxide is pipetted into a conical flask. A few drops of an indicator are added. Using a burette, dilute sulphuric acid is slowly added until the indicator just changes colour. The volume of acid needed to neutralise the alkali is noted.

sulphate-10-water.	
	••••
	[4]

Suggest how you would continue the experiment to obtain pure, dry crystals of sodium

Q# 25/ iGCSE Chemistry/2008/s/Paper 31/

5 Carbonyl chloride, COCl₂, is a colourless gas. It is made by the following reaction.

$$CO(g) + Cl_2(g) \stackrel{\text{cool}}{\rightleftharpoons} COCl_2(g)$$

(c) Carbonyl chloride reacts with water to form two acidic compounds. Suggest which acidic compounds are formed.

2

Q# 26/ iGCSE Chemistry/2008/s/Paper 31/

- 4 Sulphuric acid is a typical strong acid.
 - (a) Change the equations given into a different format.

(i)	Mg	+ H ₂ SO ₄	\rightarrow	MgSO ₄	+	H_2
	Cha	nge into a	word	equation		

[1	1
	4

 (ii) lithium oxide + sulphuric acid → lithium sulphate + water Change into a symbol equation.

[2]	1

(iii) CuO + 2H⁺ → Cu²⁺ + H₂O Change the ionic equation into a symbol equation.

(iv) Na₂CO₃ + H₂SO₄ → Na₂SO₄ + CO₂ + H₂O Change into a word equation.

(b) When sulphuric acid dissolves in water, the following reaction occurs. H₂SO₄ + H₂O → HSO₄ + H₃O⁺ Explain why water is behaving as a base in this reaction.

(c) Sulphuric acid is a strong acid, ethanoic acid is a weak acid. Explain the difference between a strong acid and a weak acid.

[2]

Q# 27/ iGCSE Chemistry/2007/w/Paper 3/

- Methylamine, CH₃NH₂, is a weak base. Its properties are similar to those of ammonia.
 - (a) When methylamine is dissolved in water, the following equilibrium is set up.

$$CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^-$$

base acid

(i) Suggest why the arrows are not the same length.

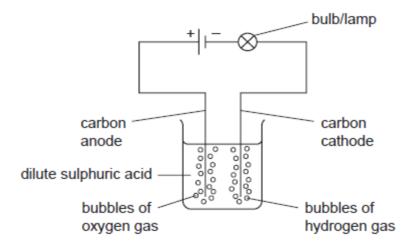
[1]

(ii) Explain why water is stated to behave as an acid and methylamine as a base.

[2]

		an aqueous solution of methylamine which has the same concentration. Give a rea for your choice of pH.			son
					[2]
	(c)	Meth	nylamine is a weak	base like ammonia.	
		(i)	Methylamine can ne	eutralise acids.	
			2CH	₃ NH ₂ + H ₂ SO ₄ → (CH ₃ NH ₃) ₂ SO ₄ methylammonium sulphate	
			Write the equation f Name the salt form	for the reaction between methylamine and hydrochloric acid. ed.	
					[2]
			•	thylamine is added to aqueous iron(II) sulphate, a green d. What would you see if iron(III) chloride solution had been o(II) sulphate?	
					[1]
	(of a reagent that will displace methylamine from one of its sal ammonium sulphate.	ts,
					[1]
Q# 28/	iGC	SE Ch	emistry/2007/s/Pape	r 3/	
3	The	ere a	re three methods o	of preparing salts.	
	Me	thod	A – use a burette	and an indicator.	
	Me	thod	B - mix two solution	ons and obtain the salt by precipitation.	
	Me	thod	C – add an exces filtration.	ss of base or a metal to a dilute acid and remove the exc	cess by
				alt preparations, choose one of the methods A , B or C , nat and then write or complete the equation.	me any
		(i)	the soluble salt, zi	inc sulphate, from the insoluble base, zinc oxide	
			method		.
			reagent		
			word equation		[3]

(b) An aqueous solution of the strong base, sodium hydroxide, is pH 12. Predict the pH of


		(ii)	the soluble salt, p	otassium	chloride, from the soluble base, potassium hydroxide	
			method			
			reagent			ı
			equation		+ → KC <i>l</i> + H ₂ O [3]	
	(iii)	the insoluble salt,	lead(II) id	odide, from the soluble salt, lead(II) nitrate	
			method			,
			reagent			
			equation Pb2++		→ [4]	
					[Total: 10]	
29/	iGCS	E Ch	emistry/2006/s/Pape	er 3/ Q3		
(d)	This	s qu	estion is concern	ed with th	he following oxides.	
			aluminium	oxide	Al_2O_3	
			calcium ox	kide	CaO	
			carbon did	oxide	CO ₂	
			carbon mo	noxide	со	
			magnesiu	m oxide	MgO	
			sulphur di	oxide	SO ₂	
	(i)		nich of the above dium hydroxide?	oxides v	will react with hydrochloric acid but not with aqueou	IS
					[1]
	(ii)				will react with aqueous sodium hydroxide but not wit	h
					[1]
	(iii)		ich of the above dium hydroxide?	oxides w	vill react both with hydrochloric acid and with aqueou	s
					[1]

Q#

(iv)	Which of the above oxides will react neither with hydrochloric acid nor waqueous sodium hydroxide?	vith
		[1]

(b) The following apparatus was set up to investigate the electrical conductivity of dilute acids.

Dilute sulphuric acid is a strong acid. If it was replaced by a weak acid, what two differences in the observations would you expect to make?

[2]

Q# 31/ iGCSE Chemistry/2006/s/Paper 3/ Q2

Q# 30/ iGCSE Chemistry/2006/s/Paper 3/ Q3

(c) The equation for the reaction of X with cold water is given below.

$$2X(s) + 2H_2O(l) \longrightarrow 2XOH(aq) + H_2(g)$$

(i) Describe the test you would use to show that the gas evolved is hydrogen.

743

(ii) How could you show that the water contained a compound of the type XOH?

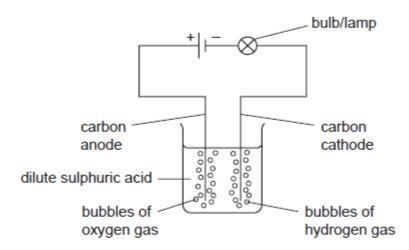
.....

(iii) In which group of the Periodic Table does metal X belong?

[1]

(iv) The ore of X is its chloride. Suggest how metal X could be extracted from its chloride.

[2]


3 (a) Four bottles were known to contain aqueous ammonia, dilute hydrochloric acid, sodium hydroxide solution and vinegar, which is dilute ethanoic acid. The bottles had lost their labels. The pH values of the four solutions were 1, 4, 10 and 13.

Complete the table.

solution	рН
aqueous ammonia	
dilute hydrochloric acid	
sodium hydroxide solution	
vinegar	

[2]

(b) The following apparatus was set up to investigate the electrical conductivity of dilute acids.

Dilute sulphuric acid is a strong acid. If it was replaced by a weak acid, what two differences in the observations would you expect to make?

[2]

(c) When nitric acid is added to water the following reaction occurs.

$$HNO_3 + H_2O \longrightarrow NO_3$$
 + H_3O^+

Give the name and the formula of the particle which is transferred from nitric acid to water.

name
formula

Q# 33/ iGCSE Chemistry/2005/w/Paper 3/ Q6

		the above method, a soluble salt was prepared by neutralising an acid with an oluble base. Other salts have to be made by different methods.
	(i)	Give a brief description of how the soluble salt, rubidium sulphate could be made from the soluble base, rubidium hydroxide.
		[3]
(ii)	S	uggest a method of making the insoluble salt, calcium fluoride.
		[3]
Q# 34/	/ iG	CSE Chemistry/2005/w/Paper 3/ Q5
(c)		ne major ore of strontium is its carbonate, SrCO ₃ . Strontium is extracted by the ectrolysis of its molten chloride.
	(i)	Name the reagent that will react with the carbonate to form the chloride.
Q# 35/	/ iG	[1] CSE Chemistry/2005/s/Paper 3/ Q2
(b)		escribe how you could show by adding aqueous sodium hydroxide and aqueous amonia that a solution contained zinc ions.
	res	sult with sodium hydroxide
		cess sodium hydroxide
		sult with aqueous ammonia
		cess aqueous ammonia [3]

Q# 36/ iGCSE Chemistry/2005/s/Paper 3/Q3

- (d) Propanoic acid is a weak acid.
 - (i) The following equation represents its reaction with ammonia.

(ii)	Explain the expression weak acid.	
		[3
	Explain why propanoic acid behaves as an acid and ammonia as a base.	
	$CH_3-CH_2-COOH + NH_3 \longrightarrow CH_3-CH_2-COO^- + NH_4^+$	

Q# 37/ iGCSE Chemistry/2005/s/Paper 3/

- 3 A South Korean chemist has discovered a cure for smelly socks. Small particles of silver are attached to a polymer, poly(propene), and this is woven into the socks.
- (b) To show that the polymer contains silver the following test was carried out.

The polymer fibres were chopped into small pieces and warmed with nitric acid. The silver atoms were oxidised to silver(I) ions. The mixture was filtered. Aqueous sodium chloride was added to the filtrate and a white precipitate formed.

(i)	Why was	the	mixture	filtered?
-----	---------	-----	---------	-----------

[4]
ניו

(ii) Explain why the change of silver atoms to silver ions is oxidation.

[1]
۲.

(iii) Give the name of the white precipitate.

	[1]

Q# 38/ iGCSE Chemistry/2005/s/Paper 3/Q6

(c) Complete the following table by writing "reaction" or "no reaction" in the spaces provided.

oxide	type of oxide	reaction with acid	reaction with alkali
magnesium	basic		
aluminium	amphoteric		

O# 39	/ iGCSF Chemistry	//2004/w	/Paner 3	/ QiGCSE Chemistry	//201	(h)
Qm JJ	IGCSE CHCHIISH	// 2007/ w	/ Laper 3	/ QIGCSE CITCHISTI	// 201 (u

(1)	Describ	e now you	could snow th	at the g	jas colle	ctea in t	nis exper	riment is oxyge	n.
									[1]
Q# 40/	iGCSE Che	emistry/2004/	w/Paper 3/						
2	The salt acid.	copper(II) su	ulphate can be	prepare	ed by rea	cting co	oper(II) o	xide with sulphu	ric
	Complete	the list of in	structions for ma	aking co	pper(II) s	ulphate	using six (of the words belo)W.
	blue) (cool	dilute		filter			
		saturated	sulphate		white		oxide		
	Instruction	ns							
	1	Add excess beaker and	copper(II) oxide boil it.	e to				sulphuric acid ir	na
	2			to re	move the	unreacte	ed copper	(II) oxide.	
	3	Heat the so	lution until it is			Г			_
	4			the	solution to	form			
		coloured cry	ystals of copper	(II)]	[6]
Q# 41/ (iii)	Rock p	hosphate (rated sulph		orm the				It reacts with te. Predict the	
		fertiliser		ions	3		formul	la	
	calc	ium phosph	ate C	a ²⁺ and	PO ₄ ³⁻				
	calciun	n superphos	phate Ca	²⁺ and l	H ₂ PO ₄ ⁻			[2]	
(iv)		ic equation n below.	for the reaction	n betwe	en the p	hosphat	e ion and	I sulphuric acid	
	PO ₄ ³⁻	+ 2H ₂ SO ₄	\rightarrow H ₂ PO ₄ $^{-}$	+ 2HS	O ₄ ⁻				
	Explain	why the pho	osphate ion is o	describe	ed as acti	ng as a	base in th	nis reaction.	
								[2]	

Mark Scheme iG Chem 8 EQ P3 Acids, bases and salts

Q# 1/ iGCSE Chemistry/2015/w/Paper 31/

,		
2(d)	add sodium hydroxide solution;	1
	filter,	1
	zinc hydroxide (is amphoteric it) will reactor will dissolve/magnesium hydroxide does not react or does not dissolve;	1

Q# 2/ iGCSE Chemistry/2015/s/Paper 31/

٧.	- 10C	5L Chemistry/2015/3/1 aper 51/		
	6(a)(i)	M1 proton acceptor;		A alternative words to 'acceptor' e.g. 'receiver' I references to pH
		M2 does not accept (protons) readily OR less able to accept protons (than strong bases);	2	A 'hydrogen ion' or 'H [†] ' for proton I accepts fewer/less protons
	6(a)(ii)	M1 same concentration of both bases;		
		M2 measure their pH;		A suitable method e.g. universal indicator or pH paper or pH meter I litmus or methyl orange or phenolphthalein I titration methods for M2 and M3
		M3 the higher pH is the stronger base;	3	A suitable colours of both weak strong bases e.g. ethylamine is (greeny)blue, NaOH is darker blue/purple
				A alternative methods for M2 and M3 e.g. measure conductivity (M2) and higher conductivity is the stronger base (M3) e.g.add aluminium/A1(M2) and stronger base gives faster rate of effervescence/more fizzing/more bubbling (M3)
	6(b)(i)	2CH ₃ CH ₂ NH ₂ + H ₂ SO ₄ → (CH ₃ CH ₂ NH ₃) ₂ SO ₄ species; balancing;		A multiples I state symbols A one mark for correct product
		the salt is ethylammonium sulfate;	3	A close spellings A diethylammonium sulfate
	6(b)(ii)	sodium hydroxide / calcium hydroxide / NaOH / Ca(OH) ₂ ;		A any Group 1 or Group 2 hydroxide or oxide

Q# 3/ iGCSE Chemistry/2014/w/Paper 31/

1 (a) Match the following pH values to the solutions given below.

1 3 7 10 13

The solutions all have the same concentration.

solution	pН
aqueous ammonia, weak base	10
dilute hydrochloric acid, a strong acid	1
aqueous sodium hydroxide, a strong base	13
aqueous sodium chloride, a salt	7
dilute ethanoic acid, a weak acid	3

(b) Hydrochloric acid strong acid or ethanoic acid weak acid [1]

OR: hydrochloric acid completely ionised or ethanoic acid partially ionised

hydrochloric acid greater concentration of/more H⁺ ions (than ethanoic acid) [1]

[5]

(c) Rate of reaction with Ca, Mg, Zn, Fe [1]

Strong (hydrochloric) acid bubbles faster or more bubbles or dissolves faster [1]

OR: rate of reaction with (metal) carbonate [1]

strong (hydrochloric) acid faster or more bubbles or dissolves faster (only if carbonate insoluble)

OR: electrical conductivity strong (hydrochloric) acid better conductor

Q# 4/ iGCSE Chemistry/2014/s/Paper 31/ Q4

	(k) (i)	Assume change is from L to R unless clearly stated: basic to amphoteric to acidic (2)	
Q# 5/	i	GCSE	Chemistry/2013/s/Paper 31/	
6			proton or H ⁺ acceptor	[1]
		(ii)	(measure) pH or (use) UI indicator	[1]
			note: can be implied need not be explicit sodium hydroxide has high <u>er</u> pH / ammonia(aq) has low <u>er</u> pH	[4]
			(this sentence would score 2 marks)	[1]
			appropriate colours with UI / appropriate numerical values	[1]
			ammonia is closer to green, blue-green, turquoise or lighter blue sodium hydroxide is darker blue / purple / violet	[1]
			or	
			measure electrical conductivity can be implied need not be explicit	[1]
			ammonia (aq) is the poorer conductor/ sodium hydroxide is the better conductor	[1]
0#6/		CCCE	Chamietry / 2012 /c / Panar 21 / O2	
Q# 6/		GCSE	Chemistry/2013/s/Paper 31/ Q2	
	(e)		ould react with/dissolves in a named strong acid	[1]
			ould <u>react with/dissolves in</u> a named alkali nows both basic and acid properties =1	[1] [1]
			eacts with both acids and bases/alkalis =1	[1]
				[max 2]
Q# 7/			Chemistry/2013/s/Paper 31/	
7 ((a)		add carbon / animal charcoal filter	[1] [1]
		•	OR	
			repeat experiment without indicator using same quantity / volume of acid	[1] [1]
			add magnesium metal / carbonate / oxide / hydroxide	
		1	to (hot) (hydrochloric) acid	[1]
		•	cond: until in excess or no more dissolves or reacts	[1]
		•	cond: filter (to remove unreacted solid)	[1]
(b)		per of moles of HC1 = 0.020 x 2.20 = 0.044	[1]
			per of moles of LiOH = 0.044 entration of LiOH = 0.044/0.025 = 1.769 (mol / dm³)	[1]
		acce	pt 1.75 to 1.77 need 2 dp	1-7
		corre	ect answer scores = 2	
			'OLOU O'	
(C)		.iC1.2H ₂ O) s of one mole = 78.5	[1]
		perce	entage water = 36 / 78.5 x 100	[1]
			so is LiC1.2H ₂ O	[1]
			award the marks if you can follow the reasoning and it gives 45.9% of water	
		note	: if correct option given mark this and ignore the rest of the response	
			v: max 2 for applying a correct method to another hydrate, [1] for the method and correct value, working essential	[1] for

[2]

Patrick Brannac

		stro	nemistry/2012/w/Paper 31/ Q7 ontium carbonate does not dissolve / no effervescence; te: not just reaction is complete	[1]
	(ii)	to r	emove excess/unreacted / undissolved strontium carbonate;	[1]
	(iii)	wou	ter of crystallisation needed / 6H ₂ O in crystals / would get anhydrous salt / uld not get hydrated salt / crystals dehydrate; :: just to obtain crystals	[1]
Q# 9/	iGC	SE CI	nemistry/2012/w/Paper 31/ Q4	
(c)	(i)	sod	ium hydroxide / any named alkali / reactive metal;	[1]
Q# 10/		ziro	ned acid; onium oxide; hemistry/2012/s/Paper 31/	[1] [1]
2		nitr	ic acid; lium hydroxide / carbonate / hydrogen carbonate;	[1] [1]
		cop	per(II) oxide / hydroxide / carbonate;	[1]
			named soluble chloride;	[1]
		silv	cept: hydrochloric acid / hydrogen chloride er(I) nitrate / ethanoate / sulfate; st be soluble silver salt not silver oxide / carbonate	[1]
		zin	c(II) sulfate	[1]
	(b)	(i)	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ equation correct state symbols missing [1]	[2]
		(ii)	$ZnCO_3 + H_2SO_4 \rightarrow ZnSO_4 + CO_2 + H_2O$ correct formula for zinc sulfate = 1	[2]
				[Total: 10]
•			hemistry/2011/w/Paper 31/ Q5	
(c)	add Fe ² Fe ³	+	dium hydroxide solution / ammonia(aq) green precipitate brown precipitate	[1] [1] [1]
Q# 12/ 1	/ iGC: (a)		hemistry/2011/w/Paper 31/ lithium oxide / strontium oxide	[1]
		(ii)	sulfur dioxide / nitrogen dioxide	[1]
	(iii)	aluminium oxide	[1]
	(iv)	carbon monoxide accept: correct formulae	[1]
Q# 13/	/ iGC	SE CI	hemistry/2011/s/Paper 31/ Q5(d)	
(iii)	not	1.3	1.3 / 1.3333 (mol/dm³) scores both marks 1.4 orrect method – M ₁ V ₁ / moles of NaOH = 0.02	[2]
			incorrect answer only [1]	

Q# 14/ IGCSE Chemistry/2011/s/Paper 31/ Q2	543
(c) base not alkali	[1]
accepts a proton	[2]
accepts hydrogen ion / H ⁺ only [1]	[-]
proton and H ⁺ [2]	
Q# 15/ iGCSE Chemistry/2011/s/Paper 31/ Q5	
(b) reaction 1 is redox / Li/2HI reaction cond reason either oxidation number/state / electron transfer	[1] [1]
Q# 16/ iGCSE Chemistry/2011/s/Paper 31/	
5 (a) (i) $2Li + 2HI \rightarrow 2LiI + H_2$	[1]
(ii) zinc carbonate + hydriodic acid $ ightarrow$ zinc iodide + carbon dioxide + water	[1]
(iii) MgO + 2HI \rightarrow MgI ₂ + H ₂ O	[1]
Q# 17/ iGCSE Chemistry/2010/w/Paper 31/ Q6	
(b) (i) zinc / aluminium / lead / tin / chromium	[1]
(ii) white precipitate	[1]
precipitate dissolves / colourless solution forms / forms a clear solution	[1]
/ soluble in excess	[1]
Q# 18/ iGCSE Chemistry/2010/w/Paper 31/	543
8 (a) filter / centrifuge / decant (partially) evaporate / heat / boil	[1] [1]
allow to crystallise / cool / let crystals form	[1]
dry crystals / dry between filter paper / leave in a warm place to dry	[1]
"dry" on its own must be a verb	
evaporate to dryness only marks 1 and 2 note if discuss residue only mark 1	
Q# 19/ iGCSE Chemistry/2009/w/Paper 3/	
2 (a) pH < 7	[1]
example	[1]
pH > 7	[1]
example	[1]
NOT amphoteric oxides Be, Al, Zn, Pb, Sn etc	
-11 - 7	541
pH = 7 example H ₂ O, CO, NO	[1] [1]
the two marks are not linked, mark each independently	1.1
NOT amphoteric oxides Be, Al, Zn, Pb, Sn etc.	
(b) (i) shows both basic and acidic properties	[1]
(ii) a named strong acid a named alkali	[1] [1]
Q# 20/ 7iGCSE Chemistry/2009/s/Paper 31/ Q7	
b) (i) because it accepts a proton	[2]
accepts hydrogen ion or H ⁺ ONLY [1]	
proton and H ⁺ [2]	
(ii) hydrogen chloride is a strong acid	[1]
hydrogen fluoride is a weak acid	[1]
weaker or stronger correctly applied for [2]	3

(iii)	hydrogen chloride (aqueous) would have low <u>er</u> pH OR hydrogen fluoride (aqueous) would have high <u>er</u> pH If values suggested, not over 7		[1]
Q# 21/	iGCSE	Chemistry/2009/s/Paper 31/ Q5	
(b)	expla	O ₄) ₂ allow correct example nin why 8 cm ³ <u>react fully</u> ment about mole ratio	[1] [1] [1]
		Chemistry/2009/s/Paper 31/	
5 (a) (i)	$Ca^{2^+} + 2F^- \rightarrow CaF_2$ Not balanced ONLY [1] Both species must be correct for first mark. Second mark is for correct balancing.	[2]
	(ii)	Mole ratio Ca ²⁺ : F ⁻ is 1:2 Answer must mention moles accept argument based on charges or <u>number</u> of ions accept 2 moles of NaF react with 1 mole of CaC l ₂ NOT just "2" in equation If fluorine must specify atoms or ions	[1]
	(iii)	to remove traces of solutions or to remove soluble impurities or to remove a named salt sodium chloride or sodium fluoride or calcium chloride To remove impurities is not enough	[1]
	(iv)	to dry (precipitate) or to remove water or to evaporate water NOT to evaporate some of water NOT to crystallise salt	[1]
Q# 23/	iGCSE	Chemistry/2008/w/Paper 31/	
1	red litmus paper blue OR white fumes/smoke with HC l (g) or (aq)		[1]
	chlorin	ne	[1]
	"pop" with a lighted splint or burn with a pop or goes pop and extinguishes flame NOT glowing splint		[1]
	oxygen		[1]
		n dioxide PT correct formulae	[1]
			[Total: 5]
Q# 24/	iGCSE	Chemistry/2008/s/Paper 31/	
7 ((pa allo dry M U	peat experiment without indicator or use carbon to remove indicator artially) evaporate or boil or heat ow to cool or crystallise or crystals crystals ST be in correct order evaporate to dryness, marks one and two ONLY	[1] [1] [1] [1]
Q# 25/ 5		Chemistry/2008/s/Paper 31/	

(c) hydrogen chloride or hydrochloric acid carbon dioxide or carbonic acid or hydrogen carbonate

4	(a)	(i)	magnesium + sulphuric acid = magnesium sulphate + hydrogen ACCEPT hydrogen sulphate	[1]	
		(ii)	Li ₂ O + H ₂ SO ₄ → Li ₂ SO ₄ + H ₂ O formulae correct but not balanced [1]	[2]	
		(iii)	CuO + $H_2SO_4 \rightarrow CuSO_4 + H_2O$ OR CuO + $2HCl \rightarrow CuCl_2 + H_2O$ OR CuO + $2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O$ formulae correct but not balanced [1]	[2]	
		(iv)	sodium carbonate + sulphuric acid → sodium sulphate + carbon dioxide + water	[1]	
	(b)		ccepts a proton ccepts a hydrogen ion [1] ONLY	[2]	
O# 27/		or f etha	churic acid is completely ionised ew molecules and many ions anoic acid is partially ionised many molecules and few ions hemistry/2007/w/Paper 3/	[1] [1]	
5			equilibrium to left or many molecules and few ions or partially ionised or reverse reaction favoured	[1]	
		(ii)	Water donates <u>proton</u> methylamine accepts a proton NOTE If hydrogen ion then ONLY [1] provided both are correct	[1] [1]	
	(b)	sm pod	s than 12 more than 7 aller <u>concentration</u> of hydroxide ions or partially dissociated or or proton acceptor or poor H ⁺ acceptor T it is a weak base	[1] [1]	
	(c)	(i)	$\label{eq:ch3NH2+HCl} CH_3NH_2 + HCl = CH_3NH_3Cl$ methylammonium chloride $ \textbf{NOTE} \ \ \text{the equation must be as written, the equation with sulphuric acid has been given as guidance.} $	[1] [1]	
		(ii)	brown precipitate ACCEPT orange or red/brown or brick red or brown/red	[1]	
Q# 28/	iG		sodium hydroxide or any <u>named</u> strong base hemistry/2008/s/Paper 31/	[1]	
3		(i)	method C sulphuric acid (allow if given in equation) zinc oxide + sulphuric acid = zinc sulphate + water	[1	1] 1] 1]
		. ,	method A hydrochloric acid KOH + HCI = KCI + H ₂ O	[1	1] 1] 1]
		(iii)	method B potassium iodide or any soluble iodide Pb ²⁺ + 2l ⁻ = Pbl ₂ accept a correct equation even if soluble iodide is wrong Not balanced - Pb ²⁺ + l ⁻ = Pbl ₂ ONLY [1]	[1	1] 1] 2]

Q# 29/	iGCS	SE Chemistry/2006/s/Paper 3/ Q3	
(d) (i)	CaO and MgO	[1]
	(ii	i) CO ₂ and SO ₂	[1]
	(ii	ii) Al ₂ O ₃	[1]
	(iv	v) CO	[1]
O# 30/	iGCS	SE Chemistry/2006/s/Paper 3/ Q3	
	(b)	With strong acid bulb brighter faster rate of bubbles OR corresponding comments for weak acid	[1] [1]
	(i)	SE Chemistry/2006/s/Paper 3/ Q2 goes "pop" with burning splint or mixed with air and ignited goes pop NOT glowing splint	[1]
(test and observable result universal indicator goes blue or pH paper goes blue or high pH, accept 13, 14	[1]
		or ammonium ion gives off ammonia or with metallic cations forms a precipitate NOT litmus ONLY accept - neutralises acids with an observable result, e.g. becomes warm.	[1]
((iii)	Group 1	[1]
(electrolysis COND molten	[1] [1]
Q# 32/	iGCS	SE Chemistry/2006/s/Paper 3/	
3		ammonia 10 hydrochloric acid 1 sodium hydroxide 13 ethanoic acid 4 All correct	[2]
		Two correct [1]	
		With strong acid bulb brighter faster rate of bubbles OR corresponding comments for weak acid	[1] [1]
		proton NOT hydrogen ion H ⁺ not conditional on proton Only way for [2] is proton and H ⁺	[1] [1]

(b)(i)	s C re	ulphuric acid OND description of titration epeat without indicator or with carbon vaporation ny TWO	[3]
(ii)	C fi	uitable reactants calcium chloride and sodium fluoride [1] OND upon correct reagents ter [1] ash and dry precipitate [1]	
	c fl	PR Accept synthesis alcium [1] uorine [1] urn or heat [1]	[3]
Q# 34/	iGCS	E Chemistry/2005/w/Paper 3/ Q5	
(c)(i)	hydrochloric acid	[1]
Q# 35/	iGCS	E Chemistry/2005/s/Paper 3/ Q2	
		c and sodium hydroxide white precipitate ves in excess (only if precipitate mentioned) [1]	
i	Mark	c and ammonia same results [1] either first (sodium hydroxide or aqueous ammonia), if completely correct, then an onal [1] can be awarded for stating that the other has the same results.	
Q# 36/ 3	iGCS	E Chemistry/2005/s/Paper 3/	
(d)	(i)	acid loses a proton base accepts a proton	[2] [1]
		OR same explanation but acid loses a hydrogen ion (1) and base gains hydrogen ion (1)	
	(ii)	only partially ionised or poor hydrogen ion donor or poor proton donor NOT does not form many hydrogen ions in water or low concentration of ions NOT pH	
Q# 37/ 3	iGCS	E Chemistry/2005/s/Paper 3/	
(b) (o remove fibres or remove solid IOT precipitate, NOT impurities, NOT to obtain a filtrate	[1]
(ecause silver atoms have <u>lost electrons</u> OR oxidation number increased	[1]
(iii) s	ilver chloride	[1]
Q# 38/	iGCS	E Chemistry/2005/s/Paper 3/	
(c)	reac	tion no reaction reaction	[1] [1]
Q# 39/	iGCS	E Chemistry/2004/w/Paper 3/ QiGCSE Chemistry/201	
(d) (i)	M	owing splint burst into flame or rekindled ust have glowing or equivalent idea R any similar description that includes the two points glowing and relights.	[1]

Q# 40/ iGCSE Chemistry/2004/w/Paper 3/

- dilute filter saturated cool
 - blue sulphate

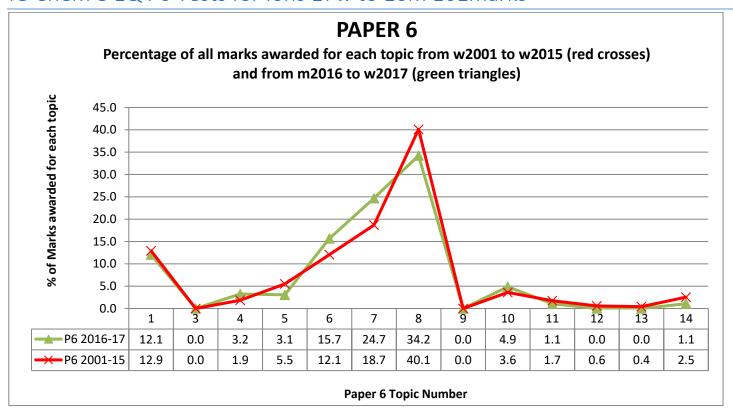
Q# 41/ iGCSE Chemistry/2004/s/Paper 3/ Q2 (b)

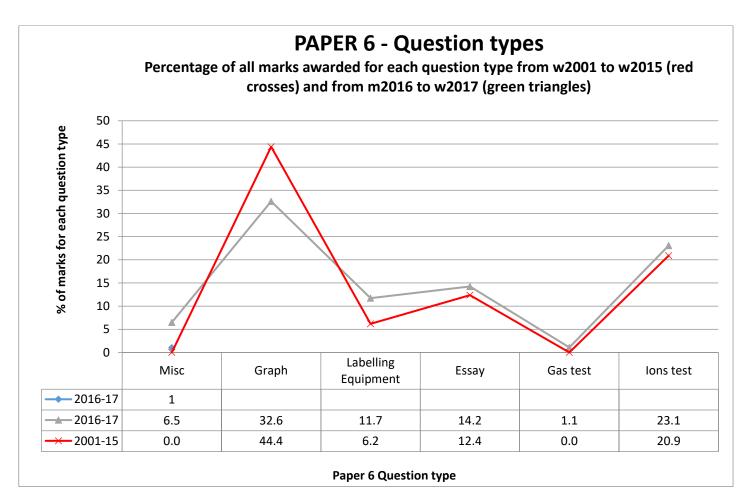
- (iii) $Ca_3(PO_4)_2$ [1] $Ca(H_2PO_4)_2$
- (iv) only acceptable responses are:

 accepts a proton
 accepts H⁺ [1] only

Q# 42/ iGCSE Chemistry/2004/s/Paper 3/

- 4 (a) (i) Named soluble zinc salt [1] corresponding sodium salt [1] If hydroxide or oxide then 0/2
 - (ii) Correct equation [2] not balanced [1] only
 - (iii) Correct equation [2]
 - (b) (i) $Fe^{3+} + 3OH^{-} = Fe(OH)_{3}$ [1]
 - (ii) Max at 8cm³ [1] Same shape of graph


Just the above shape, the height of the precipitate and the volume of sodium hydroxide are irrelevant [1]


- (iii) Maximum then height of precipitate decreases [1] or graph slopes down to x axis or comes to zero
 - hydroxide dissolves in excess or it is amphoteric [1]

[6]

iG Chem 8 EQ P6 Tests for lons 17w to 16m 161marks

Q# 1/ iGCSE Chemistry/Paper 6/2017/w/ Time Zone 3/

3 Two solutions, Y and Z, were analysed. Solution Y was aqueous chromium(III) nitrate. Tests were carried out on both solutions.

tests on solution Y

Complete the expected observations.

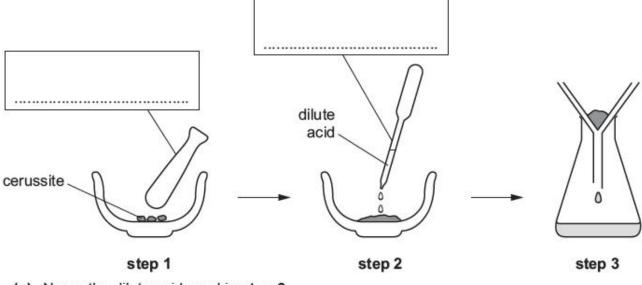
The solution was divided into two equal portions in two test-tubes.

(a) (i)	A few drops of aqueous sodium hydroxide were added to the first portion of solution Y and the test-tube shaken to mix the solutions.
	observations [2]
(ii)	An excess of aqueous sodium hydroxide was then added to the mixture.
	observations[1]
(iii)	The mixture from (a)(ii) was poured into a boiling tube and a small piece of aluminium foil was added. The mixture was heated and the gas produced was tested.
	observations
	[3]
(b) Ide	ntify the gas produced in (a)(iii).
	[1]

tests on solution Z

Tests were carried out and the following observations made.

tests on solution Z	observations
Solution Z was divided into three equal portions in three test-tubes.	
test 1	
The pH of the first portion of solution Z was tested.	pH10
test 2	
A few drops of aqueous copper(II) sulfate were added to the second portion of solution Z .	dark blue solution formed
An excess of aqueous copper(II) sulfate was then added to the mixture.	light blue precipitate formed


Patrick Brannac

test 3

The second portion of solution **Y** was added to the third portion of solution **Z**.

grey-green precipitate formed

- (c) Identify solution Z. [1]
- **Q# 2/** iGCSE Chemistry/Paper 6/2017/w/ Time Zone 3/
 - 1 Cerussite is a lead ore which contains lead(II) carbonate. A student obtained a solution of lead(II) nitrate from cerussite using the apparatus shown.

(c) Name the dilute acid used in step 2.

Q# 3/ iGCSE Chemistry/Paper 6/2017/w/ Time Zone 2/

(ii) State the effect of a lighted splint on the hydrogen produced.

.....[1]

.....[1]

Q# 4/ iGCSE Chemistry/Paper 6/2017/w/ Time Zone 2/

3 Two solid salts, U and W, were analysed. Solid U was sodium carbonate. Tests were carried out on each solid.

tests on solid U

Complete the expected observations.

(a) Describe the appearance of solid U.

.....[1]

About half of solid **U** was dissolved in distilled water to produce solution **U**. Solution **U** was divided into two equal portions in two test-tubes.

	ilute hydrochloric acid was added to the first porti he gas produced was tested.	on of solution U .	
ol	bservations		ro1
(c) N	lame the gas produced in (b) .		[3]
			[1]
1000	flame test was carried out on solid U . bservations		[1]
tests	on solid W		
Tests	were carried out and the following observations n	nade.	
	tests on solid W	observations	
Appea	rance of solid W .	white crystals	
solutio	W was dissolved in distilled water to produce in W . The solution was divided into two equal is in two test-tubes.		
test 1			
	nitric acid and aqueous silver nitrate were added first portion of solution W .	white precipitate formed	
test 2			
Section Control	econd portion of solution U was added to the d portion of solution W .	white precipitate formed	
	cess of dilute hydrochloric acid was then added mixture.	rapid effervescence white precipitate dissolved	
(e) W	/hat conclusions can you draw about solid W?		
***			[2]
	SE Chemistry/Paper 6/2017/w/ Time Zone 1/	o iron/III) nitrata	
	solid salts, F and G , were analysed. Solid F wa s were carried out on each solid.	s iron(III) nitrate.	
tests	s on solid F		
Com	plete the expected observations.		
	F was dissolved in distilled water to produce all portions in three test-tubes.	solution F. Solution F was divided	into th
(a) (A few drops of aqueous sodium hydroxide w a change was seen. 	vere added to the first portion of solut	ion F (
	observations		
			(-

(ii) An excess of aqueous sodium hydro	oxide was	then added to the mixture from (a)(i).		
observations		[1]		
(b) An excess of aqueous ammonia was ad was seen.	lded to the	second portion of solution F until a change		
observations		[1]		
(c) Aluminium foil and aqueous sodium hyd The mixture was heated and the gas wh				
test for gas				
test result		ro1		
		[2]		
(d) Identify the gas produced in (c).				
		[1]		
tests on solid G				
Tests were carried out and the following observed	ervations	made.		
tests on solid G	1	observations		
test 1				
A flame test was carried out on solid G.		red colour		
test 2				
Dilute nitric acid was added to solid G .		rapid effervescence		
The gas produced was passed through limewater. limewater turned mil				
(e) Identify solid G.				
		[2]		
iGCSE Chemistry/Paper 6/2017/s/ Time Zone 3/		[-]		
wo substances, solid J and solution K , were ests on each substance were carried out. T				
tests		observations		
tests on solid J				

observations
black solid
blue litmus turned white

Q# 6/

tests on solution K	
Solution K was divided into two equal portions in two test-tubes.	
test 2	
Iron(II) sulfate crystals were added to the first portion of the solution. The mixture was shaken and aqueous sodium hydroxide was added to the mixture.	red-brown precipitate formed
test 3	
Solid J was added to the second portion of the solution. The gas given off was tested with a splint.	glowing splint relit solid J was unchanged

......[2]

(ii) A new test 2 was carried out. Iron(II) sulfate crystals were added to water, the mixture was shaken and then aqueous sodium hydroxide was added.

What would be observed?

(b) (i) Name the precipitate formed in test 2.

Q# 7/ iGCSE Chemistry/Paper 6/2017/s/ Time Zone 1/

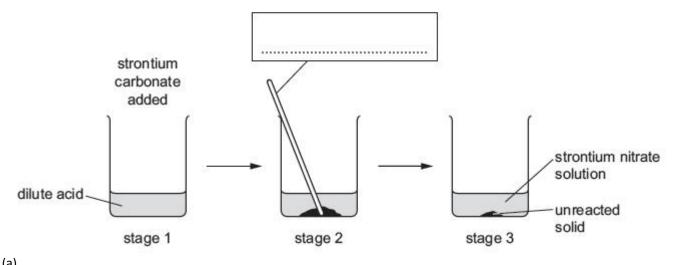
Two solids, E and F, were analysed. Solid F was potassium iodide. Tests were carried out on each solid. Some of the observations on solid E are shown.

tests on solid E	observations	
Appearance of solid E .	green solid	
test 1		
Solid E was heated gently then strongly.	the solid turned black	
test 2		
Dilute sulfuric acid was added to solid E .	rapid effervescence	
The gas given off was tested.	limewater turned milky	
Excess aqueous ammonia was then added to the mixture in the test-tube.	a pale blue precipitate formed, which then dissolved to form a dark blue solution	

test 3 A flame test was carried out on solid E. blue-green colour

(a)	Test 1 states that the solid should be heated gently then strongly.	
		In terms of safety, explain why it is necessary to heat gently at first.	
			 [1]
(b)	Identify the gas given off in test 2.	
			[1]
(c)	Identify solid E.	[2]
test	s	on solid F	[-]
Com	np	lete the expected observations.	
(d)	D	escribe the appearance of solid F .	
			[1]
Disti	lle	ed water was added to solid F in a test-tube and shaken to dissolve solid F .	
(e)	(i)	To the first portion of the solution, an excess of aqueous sodium hydroxide was added.	
		observations	[1]
(ii)	To the second portion of the solution, dilute nitric acid and aqueous silver nitrate we added.	ere
		observations	[2]
(f)	Α	flame test was carried out on solid F .	
	ob	oservations	[1]
(g)	D	escribe how you would carry out a flame test.	
			5305

Q# 8/ iGCSE Chemistry/Paper 6/2017/s/ Time Zone 1/


- 4 A sample of furniture cleaner contains aqueous sodium chloride, aqueous ammonia and sand.
 - (a) Give a test to show the presence of ammonia in the mixture.

_____[1]

Q# 9/ iGCSE Chemistry/Paper 6/2017/s/ Time Zone 1/

A student prepared strontium nitrate crystals.

The diagram shows some of the stages in this preparation.

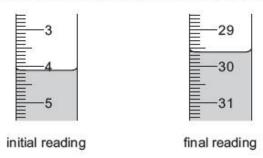
(a)	(iii)	Name the dilute acid used.

(iv) Give one expected observation in stage 2.

.....[1]

- (b) Why is heat **not** necessary in stage 2? [1
- (c) Which of the reactants is in excess? Explain your answer.
- (d) Describe how crystals of strontium nitrate could be obtained from the mixture in stage 3.

Q# 10/ i0	GCS	E Chemistry/Paper 6/2017/m/ Time Zone 2/Q1	
(0	c) (Give a test for oxygen.	
	t	test	
	1	result	[1]
(0	d) ¯	The gas collected at the positive side turned limewater milky.	
	((i) Based on this observation, what gas was present?	
			[1]

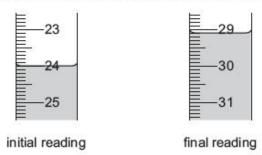

Q# 11/ iGCSE Chemistry/Paper 6/2017/m/ Time Zone 2/

2 A student investigated the reaction between dilute hydrochloric acid and two different aqueous solutions of sodium hydroxide labelled solution O and solution P.

Two experiments were carried out.

Experiment 1

- A burette was filled with dilute hydrochloric acid. The initial burette reading was recorded.
- Using a measuring cylinder, 20 cm³ of solution O were poured into a conical flask.
- Thymolphthalein indicator was added to the conical flask.
- The dilute hydrochloric acid was added from the burette, while swirling the flask, until the solution just changed colour. The final burette reading was recorded.
- (a) Use the burette diagrams to record the readings in the table and complete the table.



final burette reading/cm ³	
initial burette reading/cm ³	
difference/cm ³	

[2]

Experiment 2

- The conical flask was emptied and rinsed with distilled water.
- Experiment 1 was repeated using solution P instead of solution O.
- (b) Use the burette diagrams to record the readings in the table and complete the table.

final burette reading/cm ³	
initial burette reading/cm ³	
difference/cm ³	

[2]

(c)		at type of chemical reaction occurs when dilute hydrochloric acid reacts with lium hydroxide solution?[1]
(d)	(i)	Which solution of sodium hydroxide, solution O or solution P , is the more concentrated? Explain your answer.
	(ii)	How many times more concentrated is this solution of sodium hydroxide than the other
		solution of sodium hydroxide? [1]
(e)		xperiment 2 were repeated using 10 cm ³ of solution P , what volume of dilute hydrochloric acid uld be needed?
		[2]
(f)	if th	at would be the effect, if any, on the volume of dilute hydrochloric acid used in Experiment 1 ne solution of sodium hydroxide were warmed before adding the dilute hydrochloric acid? The a reason for your answer.
	effe	ect on volume
	rea	son[2]
(g)	(i)	What would be a more accurate method of measuring the volume of the aqueous sodium hydroxide solution?
		[1]
	(ii)	Suggest how the reliability of the results could be checked.
(h)		ueous sodium hydroxide reacts with aqueous calcium chloride to form a precipitate of cium hydroxide.
		e this information to suggest a different method of finding out which of the solutions of lium hydroxide is the more concentrated.

		lid barium hydroxide is added to solid a w could you show whether or not the fir	
: 13/ iG0		Chemistry/Paper 6/2017/m/ Time Zone 2/	[
Two	sol	ids, Q and R , which are both salts, were ere carried out on each solid.	e analysed. Solid Q was zinc bromide.
test	s 01	n solid Q	
	solu		ons in three test-tubes, and the following tests were
Con	nple	te the expected observations.	
(a)	(i)	Drops of aqueous sodium hydroxide w change was seen.	vere added to the first portion of the solution until a
		observations	[2]
	(ii)	Excess aqueous sodium hydroxide wa	as then added to the mixture.
		observations	[1]
(b)	(i)	Drops of aqueous ammonia were adde was seen.	d to the second portion of the solution until a change
		observations	[1]
	(ii)	Excess aqueous ammonia was then a	dded to the mixture.
		observations	[1
(c)	Dilu	ate nitric acid and aqueous silver nitrate	were added to the third portion of the solution.
	obs	servations	[2
tests o	n so	olid R	
Tests w	ere	carried out and the following observation	ons made.
		tests on solid R	observations
A 007447			

A flame test was carried out on solid R.

yellow colour

	dissolved in distilled water. The divided into two equal portions in es.		
test 2			
	acid and aqueous barium nitrate to the first portion of the solution.	no change	
test 3			
	acid and aqueous silver nitrate to the second portion of the	yellow precipitate formed	
(d) Identify s		rol	
Q# 14/ iGCSE Che 3 Two so tests o (a) So	emistry/Paper 6/2016/w/ Time Zone 3/ olutions, solution Q and solution R , we have a colution Q	vere analysed. Solution Q was aqueous sulfuric acid. al portions in four test-tubes. The following tests we	re
(i)	test 1		
	The pH of the first portion of soluti	on Q was measured.	
	pH		1]
(ii)	test 2		
	Magnesium ribbon was added to t tested.	the second portion of solution Q. The gas given off wa	as
	observations		
			3]
(iii)	test 3		
	Sodium carbonate was added to tested.	the third portion of solution Q. The gas given off wa	as
	observations		10.5

(iv	test	4

Dilute nitric acid and aqueous barium nitrate were added to the fourth portion	on of solution Q
observations	[1

tests on solution R

Solution **R** was divided into three equal portions in three test-tubes. The following tests were carried out.

tests	observations
test 5	
The pH of the first portion of solution R was measured.	pH = 10
test 6	
Drops of aqueous sodium hydroxide were added to the second portion of solution R and the test-tube shaken.	white precipitate
Excess aqueous sodium hydroxide was then added to the test-tube.	no visible change
test 7	
Aqueous iron(II) sulfate was added to the third portion of solution R and the mixture shaken.	green precipitate formed

(b)	dentify solution R.
	12

Q# 15/ iGCSE Chemistry/Paper 6/2016/w/ Time Zone 2/Q3

3 Two solutions, solution S and solution T, were analysed. Solution S was dilute hydrochloric acid. The tests on solution S and solution T, and some of the observations, are shown.

tests on solution S

(a) Solution S was divided into four equal portions in four test-tubes. The following tests were carried out.

Complete the observations for tests 1-4.

(i) test 1

The pH of the first portion of solution S was tested.
--

рΗ	

	(11)	test 2
		Copper(II) oxide was added to the second portion of the solution. The mixture was heated.
		observations
		[2]
	(iii)	test 3
		Solid sodium carbonate was added to the third portion of the solution. The gas given off was tested.
		observations
		[3]
	(iv)	test 4
		Dilute nitric acid and aqueous silver nitrate were added to the fourth portion of the solution.
		observations[1]
test	s on	solution T
(b)	Tests	were carried out on solution T and the following observations made.

tests	observations
Solution T was divided into three equal portions in three test-tubes.	
Appearance of the solution.	yellow solution
Drops of aqueous sodium hydroxide were added to the second portion of the solution and the test-tube shaken. Excess aqueous sodium hydroxide was then	red-brown precipitate
added to the test-tube.	no visible change
Aqueous sodium hydroxide and aluminium foil were added to the third portion of the solution and the mixture heated. The gas given off was tested with pH indicator paper.	pungent gas formed, pH 10

Identify solution T.	
	[2

Q# 16/ iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/Q3

3 Solid P, which is an aluminium salt, was analysed. The tests on solid P, and some of the observations, are shown.

tests on solid P

(a)	tes	11
	Soli	d P was divided into three portions. The first portion of solid P was heated.
	obs	servations condensation formed on the sides of the test-tube
	Any	gases given off were tested with cobalt(II) chloride paper.
	obs	servations cobalt(II) chloride paper turned from blue to pink
	Wh	at does test 1 tell you about solid P?
		[1]
(b)	tes	12
	A fla	ame test was carried out on the second portion of solid P.
	obs	ervations[1]
tes	ts o	n a solution of P
Dis	tilled	water was added to the rest of solid P in a test-tube and shaken to dissolve.
(c)		e solution was divided into four equal portions in four test-tubes. The following tests were ried out.
	(i)	test 3
		Several drops of aqueous sodium hydroxide were added to the first portion of the solution.
		Excess aqueous sodium hydroxide was then added to the mixture.
		observations
		[3]
	(ii)	test 4
		Several drops of aqueous ammonia were added to the second portion of the solution.
		Excess aqueous ammonia was then added to the mixture.
		observations
		[2]

Two further tests were carried out and the following observations made.

tests on a solution of P	observations
test 5	
Dilute nitric acid and aqueous silver nitrate were added to the third portion of the solution.	no visible reaction
test 6	
Dilute nitric acid and aqueous barium nitrate were added to the fourth portion of the solution.	white precipitate formed

(d)	What does test 5 tell you about solid P?	
	s	[1]
(e)	Identify solid P.	
		[1]
(f)	Describe the appearance of solid P .	
		[1]
	CSE Chemistry/Paper 6/2016/w/ Time Zone 1/Q1	0.00000000000000000000000000000000000
(d) Give one test to distinguish between oxygen and hydrogen.	
	test	wiwound was and was
	result with oxygen	
	result with hydrogen	
		[2]

Q# 18/ iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/

2 A student investigated what happened when dilute nitric acid reacted with aqueous solutions of two different alkalis, solution N and solution O.

Two experiments were carried out.

(a) Experiment 1

A measuring cylinder was used to pour 50 cm³ of solution **N** into a polystyrene cup. The initial temperature of the solution was measured.

A burette was filled with nitric acid to the 0.0 cm3 mark

5.0 cm³ of nitric acid were added to solution **N** in the polystyrene cup and the solution stirred. The maximum temperature of the solution was measured.

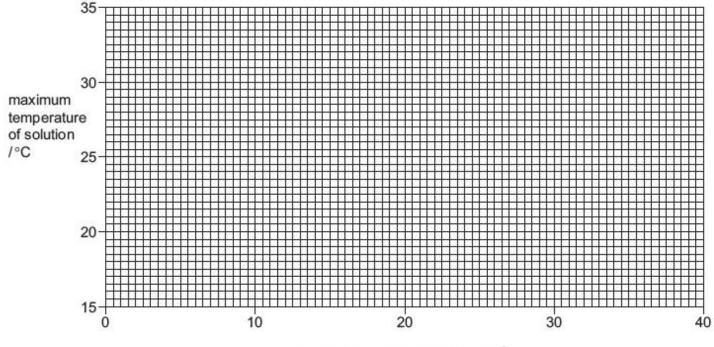
A further 5.0 cm³ of nitric acid were added to the polystyrene cup and the solution stirred. The maximum temperature of the solution was measured.

The student continued to add 5.0 cm³ portions of nitric acid to the polystyrene cup, until a total volume of 40 cm³ of nitric acid had been added. After each addition, the solution was stirred and the maximum temperature measured.

Use the thermometer diagrams to record the maximum temperatures in the table.

volume of nitric acid added/cm ³	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
thermometer diagram	30 - 25 - 20	30 -25 -20	35 -30 -125	35 -30 -25	35 30 25	35 -35	35 30 25	35 30 25	35 30 25
maximum temperature of the solution in the polystyrene cup/°C									

[2]


(b) Experiment 2

Experiment 1 was repeated using solution **O** instead of solution **N**. Use the thermometer diagrams to record the maximum temperatures in the table.

volume of nitric acid added/cm ³	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
thermometer diagram	30 -25 -20	30 -25 -120	H 30 -25 -120	30 25 20	30 -25 -20	30 25 20	30 -25 -20	30 25 25	25 20
maximum temperature of the solution in the polystyrene cup/°C									

[2]

(c) Plot the results for Experiments 1 and 2 on the grid and draw two smooth line graphs. Clearly label your graphs.

volume of nitric acid added / cm3

SMASHING I I

(e) Name a suitable indicator that could be used in Experiment 1. [1] (f) Solution N and solution O were the same concentration. In which experiment is the temperature change greater? Suggest why the temperature change is greater in this experiment. [2] (g) How would the results differ in Experiment 1 if 100 cm³ of solution N were used? [1] (h) Suggest why a polystyrene cup was used in these experiments and not a copper can. [1] (i) State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement		
(f) Solution N and solution O were the same concentration. In which experiment is the temperature change greater? Suggest why the temperature change is greater in this experiment. [2] (g) How would the results differ in Experiment 1 if 100 cm³ of solution N were used? [1] (h) Suggest why a polystyrene cup was used in these experiments and not a copper can. [1] (i) State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2] GCSE Chemistry/Paper 6/2016/w/ Time Zone 1/ Agri Limes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields to neutralise acidity. Plan an investigation to find out which of two different Agri Limes, Q or R, will neutralise more acid.		°C [2]
(f) Solution N and solution O were the same concentration. In which experiment is the temperature change greater? Suggest why the temperature change is greater in this experiment. [2] (g) How would the results differ in Experiment 1 if 100 cm³ of solution N were used? [1] (h) Suggest why a polystyrene cup was used in these experiments and not a copper can. [1] (i) State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement	(e)	
is greater in this experiment. [2] (g) How would the results differ in Experiment 1 if 100 cm³ of solution N were used? [1] (h) Suggest why a polystyrene cup was used in these experiments and not a copper can. [1] (i) State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2] iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/ Agri Limes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields to neutralise acidity. Plan an investigation to find out which of two different Agri Limes, Q or R, will neutralise more acid.	(f)	
(g) How would the results differ in Experiment 1 if 100 cm³ of solution N were used? [1] (h) Suggest why a polystyrene cup was used in these experiments and not a copper can. [1] (i) State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2] GCSE Chemistry/Paper 6/2016/w/ Time Zone 1/ Agri Limes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields to neutralise acidity. Plan an investigation to find out which of two different Agri Limes, Q or R, will neutralise more acid.		
(h) Suggest why a polystyrene cup was used in these experiments and not a copper can. [1] (i) State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2] iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/ Agri Limes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields to neutralise acidity. Plan an investigation to find out which of two different Agri Limes, Q or R , will neutralise more acid.		[2
(h) Suggest why a polystyrene cup was used in these experiments and not a copper can. [1] (i) State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2] iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/ Agri Limes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields to neutralise acidity. Plan an investigation to find out which of two different Agri Limes, Q or R , will neutralise more acid.	(g)	How would the results differ in Experiment 1 if 100 cm ³ of solution N were used?
(i) State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement		[1
of error. source of error improvement	(h)	Suggest why a polystyrone cup was used in those experiments and not a copper can
improvement		
iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/ Agri Limes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields to neutralise acidity. Plan an investigation to find out which of two different Agri Limes, Q or R , will neutralise more acid.	0.000	State one source of error in the experiments. Suggest an improvement to reduce this source
Agri Limes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields to neutralise acidity. Plan an investigation to find out which of two different Agri Limes, Q or R , will neutralise more acid.	0.000	State one source of error in the experiments. Suggest an improvement to reduce this source of error.
	0.000	State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement
	(i) iGCSI Agri L	State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2] Chemistry/Paper 6/2016/w/ Time Zone 1/ imes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields
	(i) iGCSI Agri L to neu Plan a	State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2 Chemistry/Paper 6/2016/w/ Time Zone 1/ imes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields stralise acidity. In investigation to find out which of two different Agri Limes, Q or R , will neutralise more acid.
	(i) iGCSI Agri L to neu Plan a	State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2 Chemistry/Paper 6/2016/w/ Time Zone 1/ imes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields stralise acidity. In investigation to find out which of two different Agri Limes, Q or R , will neutralise more acid.
	(i) iGCSI Agri L to neu Plan a	State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2 Chemistry/Paper 6/2016/w/ Time Zone 1/ imes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields stralise acidity. In investigation to find out which of two different Agri Limes, Q or R , will neutralise more acid.
	(i) iGCSI Agri L to neu Plan a	State one source of error in the experiments. Suggest an improvement to reduce this source of error. source of error improvement [2 Chemistry/Paper 6/2016/w/ Time Zone 1/ imes are mixtures of calcium carbonate and calcium oxide. Farmers use Agri Limes on fields stralise acidity. In investigation to find out which of two different Agri Limes, Q or R , will neutralise more acid.

(d) Use your graph to estimate the maximum temperature of the solution when $13\,\mathrm{cm}^3$ of nitric acid

) Th		y/Paper 6/2016/s/ Time Zone 3/Q2 roduced in experiment 3 was tested with a lighted splint and the result recorded
	tes	t	lighted splint
	res	sult	popped
	Na	me the	gas given off in experiment 3.
			[1]
3 An	nixtur d solie	e of two	y/Paper 6/2016/s/ Time Zone 3/ o solids, G and H , was analysed. Solid G was zinc nitrate, which is water soluble, isoluble in water. e mixture, and some of the observations, are shown.
			was added to the mixture in a boiling tube and shaken. The contents of the boiling ed keeping the filtrate and the residue.
tes	ts or	filtrate	
(a)	The	filtrate	was divided into four test-tubes and the following tests carried out.
	(i)		of aqueous sodium hydroxide were added to the first portion of the solution. s aqueous sodium hydroxide was then added to the test-tube.
		observ	ations
			[3]
	(ii)		the second portion of the solution, the test in (a)(i) was repeated using aqueous nia instead of aqueous sodium hydroxide.
		observ	ations
			[2]
9)	(iii)	Dilute i nitrate.	nitric acid was added to the third portion of the solution followed by aqueous silver
		observ	ations[1]
3)	(iv)	solution	us sodium hydroxide and aluminium foil were added to the fourth portion of the n. xture was warmed and the gas given off was tested.
			ations
			[3]

tests on residue

Two tests are carried out and the following observations made.

	tests	observations
residu Dilute	atula was used to transfer some of the ue into a test-tube. hydrochloric acid was added to the ue. The gas given off was tested.	rapid effervescence, limewater turned milky
A flam	ne test was carried out on the residue.	red flame colour
(b) Ide	entify solid H .	
 O# 22/ iG	CCSE Chemistry/Paper 6/2016/s/ Time Zone 2/	[2]
4 F S T S F	Potassium sulfate is the salt produced when solution. The correct amount of potassium hydroxid sulfuric acid.	sulfuric acid is neutralised by potassium hydroxide e solution must be added to neutralise all of the als of potassium sulfate from sulfuric acid and paratus.
	CSE Chemistry/Paper 6/2016/s/ Time Zone 2/	E was sodium sulfite. Both solids were found to be water bservations, are shown below.
	(a) Describe the appearance of the solid.	

	(a) Dis	tilled water was added to solid E in a tes	t-tube and snaken to dissolve.					
	The	e solution was divided into two portions in	two test-tubes and the following tests carried of	out.				
	(i)	Aqueous sodium hydroxide was added	to the first portion of the solution.					
		observations		[1]				
	(ii) Dilute hydrochloric acid was added to the second portion of the solution. It was warmed. The gas given off was tested with a piece of filter paper soaked acidified potassium manganate(VII) solution. observations							
				[2]				
	(c) A fl	ame test was carried out on solid E .						
	obs	servations		[1]				
	110.00			1.1				
	tests o	n solid F						
7		tests	observations	78				
848			,	1				
		d was heated. The gas given off was th damp, red litmus paper.	pungent gas evolved					
	colcu Wi	ur damp, red nands paper.	red litmus paper turned blue					
23	4	50 KE 60 600 500 500 50	- 100 Maria - 100	8				
		sodium hydroxide was added to nd the mixture heated. The gas given	pungent gas evolved					
5577.0	ff was to	선물 발생님이 없다면 보다 생각이 가장 하면 되었다. 아이지 아이는 아이는 아이는 아이는 아이는 아이지 않는데 아이지 않아 아이지 않는데 아	Universal Indicator paper showed pH 10					
		ntify the gas given off in the tests on soli		[1]				
		ne iG Chem 8 EQ P6 Tests		113				
200 1 1 1 2 2 2 2 2 2 2	20000000000	nistry/Paper 6/2017/w/ Time Zone 3/		0 ,				
3(a)(i)	green			92				
2/-\/:::	precipit	1927		0				
3(a)(ii) 3(a)(iii)	X 927/A	olution / precipitate dissolves		3				
o(a)(III)	60 BX685	nus paper / Universal Indicator paper		85				
	100 10000	nus paper) turns blue / (Universal Indicator paper) tur	ns purple	85				
	A. e. a. step	F-F/ terris size (form cross maloctor paper) to	The Park and the P	165				
3/b)	ammon	ia/NH ₂						
3(b) 3(c)	ammon	ia / NH ₃ us) ammonia / NH ₃						

nitric (acid)

Q# 3/ iGCSE Chemistry/Paper 6/2017/w/ Time Zone 2/

1(d)(ii)	'pops'	1	
----------	--------	---	--

Q# 4/ iGCSE Chemistry/Paper 6/2017/w/ Time Zone 2/

3(a)	white (crystals)	1
3(b)	bubbles / fizz	1
	limewater	1
	(turns) milky	1
3(c)	carbon dioxide	i
3(d)	yellow	1
3(e)	non-transition metal / Group II metal / barium / calcium / magnesium	1
3(e)	chloride	1

Q# 5/ iGCSE Chemistry/Paper 6/2017/w/ Time Zone 1/

3(a)(i)	red-brown	1
	precipitate	1
3(a)(ii)	insoluble / no change	.1
3(b)	red-brown precipitate	1
3(c)	(red) litmus paper	.1
	turns blue	.1
3(d)	ammonia	. 1
3(e)	lithium	. 1
	carbonate	:1

Q# 6/ iGCSE Chemistry/Paper 6/2017/s/ Time Zone 3/

3(a)	chlorine	1
3(b)(i)	iron(III)	
	hydroxide	
3(b)(ii)	green	1
	precipitate	1
3(c)	oxygen	1
3(d)	catalyst	1
	transition element compound/manganese oxide	1

Q# 7/ iGCSE Chemistry/Paper 6/2017/s/ Time Zone 1/

3(a)	solid spits out of the tube/the tube might crack	1
3(b)	carbon dioxide	1
3(c)	copper/Cu ²⁺	1
	carbonate / CO ₃ ²⁻	1
3(d)	white	1
3(e)(i)	no reaction / change	1
3(e)(ii)	yellow	1
	precipitate	1
3(f)	lilac	1

Q# 8/ iGCSE Chemistry/Paper 6/2017/s/ Time Zone 1/

4(a) (red) litmus turns blue

Q# 9/ iGCSE Chemistry/Paper 6/2017/s/ Time Zone 1/

1(a)(iii)	nitric (acid)	1
1(a)(iv)	bubbles/fizz/effervescence	1
1(b)	the reaction is (fast) at room temperature	. 1

1(c)	strontium carbonate	1
	solid is left behind	1
1(d)	filter	1
	heat/evaporate	1
	to crystallising point/glass rod test/until saturation point	1
10/ iG(CSE Chemistry/Paper 6/2017/m/ Time Zone 2/	
1(c)	test: glowing splint result: relights	.1
1(d)(i)	carbon dioxide	1
11/ iG(SE Chemistry/Paper 6/2017/m/ Time Zone 2/	
2(a)	initial and final readings completed correctly: 29.6; 4.1	
	difference completed correctly: 25.5	1
2(b)	initial and final readings and difference completed correctly: 29.1; 24.0; 5.1	1
	all readings to 1 d.p.	1
2(c)	neutralisation	1
2(d)(i)	solution O	1
	greater volume of acid was used in the titration	1
2(d)(ii)	five times as concentrated	1
2(e)	2.5–2.8	1
-(-)	unit: em³	1
2(f)	effect on volume: no effect	1
2(1)	reason: temperature would only affect the rate	1
2(g)(i)	use a pipette/burette	1
	The state of the s	1
2(g)(ii)	repeat experiments (and compare/average)	
2(h)	M1 fair test to equal volumes of each sodium hydroxide solution/solutions O and P add an equal volume/measured volumes of aqueous calcium chloride	1
	M2 dependent variable measured measure mass/height of precipitate formed/volume of calcium chloride used	1
	M3 conclusion the more concentrated sodium hydroxide solution would form the most precipitate (mass/height)/would require a smaller volume of calcium chloride	1
12/ iG0	CSE Chemistry/Paper 6/2017/m/ Time Zone 2/	
4(b)	M1 add (aqueous) sodium hydroxide (and warm)	1
	M2 gas produced turns (red) litmus blue	1
13/ iG(3(a)(i)	CSE Chemistry/Paper 6/2017/m/ Time Zone 2/	
	precipitate	
3(a)(ii)	(white precipitate) dissolves	
3(b)(i)	white precipitate	25
3(b)(ii)	(white precipitate) dissolves	
3(c)	cream	- 1
0(0)	5 (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
264	precipitate	
3(d)	sodium	
147:00	iodide	
1000.000	CSE Chemistry/Paper 6/2016/w/ Time Zone 3/	
3(a)(i)	pH 1–3	2
3(a)(ii)	effervescence/fizzing/bubbling/solid disappears/dissolves lighted splint 'pops'	

3(a)(iii)	effervescence/fizzing/bubbling/solid disappears/dissolves limewater milky	1 1
3(a)(iv)	white precipitate	1
3(b)	calcium/Ca ²⁺ hydroxide/OH ⁻	1 1

Q# 15/ iGCSE Chemistry/Paper 6/2016/w/ Time Zone 2/

3(a)(i)	pH 1–3	1
3(a)(ii)	solid disappears/dissolves blue/green colour	1
3(a)(iii)	solid dissolves limewater turns milky	1 1 1 1 1
3(a)(iv)	white precipitate	1
3(b)	iron(III) nitrate	1

Q# 16/ iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/

3(a)	water present/hydrated	1
3(b)	no change/colour	1
3(c)(i)	white precipitate dissolves	1 1 1
3(c)(ii)	white precipitate no change	1
3(d)	not a halide	1
3(e)	(aluminium) sulfate	1
3(f)	white (crystals)	1

Q# 17/ iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/

•	,, , , , , , , , , , , , , , , , , , , ,	11
1(d)	lighted splint no effect/brighter light for oxygen	1
	'pops' for hydrogen OR	1
	glowing splint	80
	relights for oxygen	1
	no effect for hydrogen	1

Q# 18/ iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/

2(a)	table of results for Experiment 1 all temperature boxes completed correctly 22, 24, 26, 28, 30, 31, 30, 29, 28	2
2(b)	table of results for Experiment 2 initial and other temperature boxes completed correctly 20, 21, 22, 23, 24, 25, 24, 23, 22	2
2(c)	all points correctly plotted best-fit smooth line graphs labels	2 1 1
2(d)	value from graph (27 °C) shown clearly	1
2(e)	phenolphthalein/litmus/suitable named indicator	1
2(f)	Experiment 1/solution N solution N is a stronger acid/has a higher pH	1
2(g)	measured results/temperature changes/results would be smaller OR larger/double volume needed to reach same temperature changes	1
2(h)	polystyrene is an insulator/copper is a (good) conductor	1

2(i)	source of error: heat losses/using a measuring cylinder	1	
	improvement: lag or insulate/use burette	1	

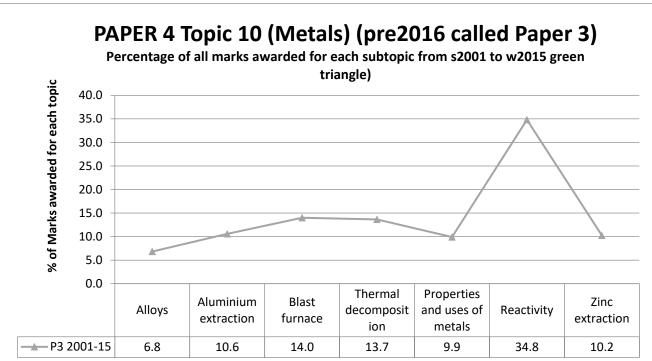
Q# 19/ iGCSE Chemistry/Paper 6/2016/w/ Time Zone 1/

4		6
	method adding Agri Lime to acid	-
	add weighed amount/known mass of Agri Lime Q	
	to a known volume of acid	
	with a named indicator added to the acid	
	until the indicator changes colour	
	note the mass of Agri Lime Q added	
	repeat with Agri Lime R	
	conclusion, e.g. 'the experiment using the smaller amount of Agri Lime is better'	
	OR	
	method adding acid to Agri Lime	
	use weighed amount/known mass of Agri Lime Q	
	add acid to it gradually/from a burette	
	with a named indicator added to the acid	
	until the indicator changes colour	
	note volume of acid added	
	repeat with Agri Lime R	
	conclusion, e.g. 'the experiment using the larger volume of acid is better'	

Q# 20/ iGCSE Chemistry/Paper 6/2016/s/ Time Zone 3/

2(b) hydrogen;

Q# 21/ iGCSE Chemistry/Paper 6/2016/s/ Time Zone 3/


3(a)(i)	white; precipitate; dissolves;	1 1 1
3(a)(ii)	white precipitate; dissolves;	1 1
3(a)(iii)	no reaction/change/precipitate;	1
3(a)(iv)	any 3 from: effervescence/fizz/bubbles; red litmus/pH paper; blue/pH > 7; pungent smell;	3
3(b)	lithium; carbonate;	1 1

Q# 22/ iGCSE Chemistry/Paper 6/2016/s/ Time Zone 2/

-		
4	making the salt	6
	any 4 from:	
	known volume sulfuric acid; add named indicator;	
	add potassium hydroxide solution to the acid until the indicator changes colour/is neutralised; note/measure the volume of potassium hydroxide solution added;	
	 repeat without indicator OR add (decolourising) charcoal; 	
	obtaining crystals	ĺ
	any 2 from:	
	 heat/evaporate solution to crystallising point <u>until half evaporated</u> OR <u>until crystals (start to) form</u> OR <u>until saturated;</u> 	
	leave to cool;	
	 filter to get crystals; 	
	 dry crystals (on filter paper)/leave to dry; 	

Q# 23/ iGCSE Chemistry/Paper 6/2016/s/ Time Zone 2/

3(a)	white (solid/crystals/powder);	1
3(b)(i)	no change;	1
3(b)(ii)	tums from purple/pink; to colourless/white;	1 1
3(c)	yellow/orange (flame);	1
3(d)	ammonia/NH ₃ ;	1
3(e)	ammonium/NH ₄ *;	1
	NETOMATOR CLIPK COMPANY COMPANY	

Paper 3 Topic Number

10 Metals

10.1 Properties of metals

Core

- List the general physical properties of metals
- Describe the general chemical properties of metals, e.g. reaction with dilute acids and reaction with oxygen
- Explain in terms of their properties why alloys are used instead of pure metals
- Identify representations of alloys from diagrams of structure

10.2 Reactivity series

Core

- Place in order of reactivity: potassium, sodium, calcium, magnesium, zinc, iron, (hydrogen) and copper, by reference to the reactions, if any, of the metals with:
 - water or steam
 - dilute hydrochloric acid
 and the reduction of their oxides with carbon

 Deduce an order of reactivity from a given set of experimental results

Supplement

- Describe the reactivity series as related to the tendency of a metal to form its positive ion, illustrated by its reaction, if any, with:
 - the aqueous ions
 - the oxides

of the other listed metals

- Describe and explain the action of heat on the hydroxides, carbonates and nitrates of the listed metals
- Account for the apparent unreactivity of aluminium in terms of the oxide layer which adheres to the metal

10.3 Extraction of metals

Core

- Describe the ease in obtaining metals from their ores by relating the elements to the reactivity series
- Describe and state the essential reactions in the extraction of iron from hematite
- Describe the conversion of iron into steel using basic oxides and oxygen
- Know that aluminium is extracted from the ore bauxite by electrolysis
- Discuss the advantages and disadvantages of recycling metals, limited to iron/steel and aluminium

Supplement

Describe in outline, the extraction of zinc from zinc blende

 Describe in outline, the extraction of aluminium from bauxite including the role of cryolite and the reactions at the electrodes

10.4 Uses of metals

Core

- Name the uses of aluminium:
 - in the manufacture of aircraft because of its strength and low density
 - in food containers because of its resistance to corrosion
- Name the uses of copper related to its properties (electrical wiring and in cooking utensils)
- Name the uses of mild steel (car bodies and machinery) and stainless steel (chemical plant and cutlery)

Supplement

 Explain the uses of zinc for galvanising and for making brass

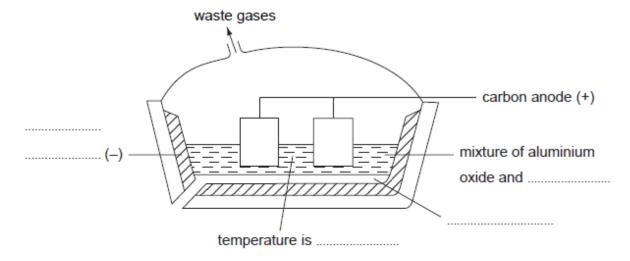
 Describe the idea of changing the properties of iron by the controlled use of additives to form steel alloys

Topic Chem 10 Subtopic: Alloys Q# 1/ iGCSE Chemistry/2015/s/Paper 31/

- 2 Iron from the Blast Furnace is impure. It contains about 5% of impurities, mainly carbon, sulfur, silicon and phosphorus, which have to be removed when this iron is converted into steel.
 - (b) Mild steel is the most common form of steel. Mild steel contains a maximum of 0.3% of carbon.

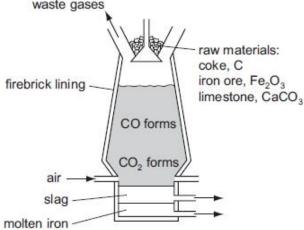
High carbon steel contains 2% of carbon. It is less malleable and much harder than mild steel.

(i)	Give a use of mild steel.
	[1]
(ii)	Suggest a use of high carbon steel.
	[1]
iii)	Explain why metals are malleable.


opic Chem 10 Subtopic : Alloys Q# 2/ IGCSE Chemistry/2011/s/Paper 31/Q3 (b) (i) Why are steel alloys used in preference to iron? [1] (ii) State a use of the following alloys. mild steel stainless steel [2] opic Chem 10 Subtopic : Alloys Q# 3/ IGCSE Chemistry/2006/w/Paper 3/ Q6 (b) Impure copper is extracted from the ore. This copper is refined by electrolysis. (iii) One use of this pure copper is electrical conductors, another is to make alloys. Name the metal that is alloyed with copper to make brass. [1] opic Chem 10 Subtopic : Aluminium extraction Q# 4/ IGCSE Chemistry/2011/w/Paper 31/ 3 Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite. waste gases, oxygen and carbon dioxide, from anode (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just alumina.	(IV	steel.	
(ii) Why are steel alloys used in preference to iron? (iii) State a use of the following alloys. mild steel stainless steel [2] (b) Impure copper is extracted from the ore. This copper is refined by electrolysis. (iii) One use of this pure copper is electrical conductors, another is to make alloys. Name the metal that is alloyed with copper to make brass. [1] (ii) Subtopic: Aluminium extraction Q# 4/ iGCSE Chemistry/2011/w/Paper 31/ 3 Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite. waste gases, oxygen and carbon dioxide, from anode (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just			
(ii) State a use of the following alloys. mild steel	opic Chem	10 Subtopic : Alloys Q# 2/ iGCSE Chemistry/2011/s/Paper 31/Q3	
(ii) State a use of the following alloys. mild steel	(b) (i)	Why are steel alloys used in preference to iron?	
stainless steel			[1]
stainless steel	(ii)	State a use of the following alloys.	
opic Chem 10 Subtopic: Alloys Q# 3/ iGCSE Chemistry/2006/w/Paper 3/ Q6 (b) Impure copper is extracted from the ore. This copper is refined by electrolysis. (iii) One use of this pure copper is electrical conductors, another is to make alloys. Name the metal that is alloyed with copper to make brass. [1] Opic Chem 10 Subtopic: Aluminium extraction Q# 4/ iGCSE Chemistry/2011/w/Paper 31/ 3 Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite. waste gases, oxygen and carbon dioxide, from anode (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just		mild steel	
(iii) One use of this pure copper is electrical conductors, another is to make alloys. Name the metal that is alloyed with copper to make brass. [1] Opic Chem 10 Subtopic : Aluminium extraction Q# 4/ iGCSE Chemistry/2011/w/Paper 31/ 3 Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite. Waste gases, oxygen and carbon dioxide, from anode (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just		stainless steel	[2]
(iii) One use of this pure copper is electrical conductors, another is to make alloys. Name the metal that is alloyed with copper to make brass. [1] opic Chem 10 Subtopic: Aluminium extraction Q# 4/ iGCSE Chemistry/2011/w/Paper 31/ 3 Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite. waste gases, oxygen and carbon dioxide, from anode from anode carbon cathode (-) mixture of aluminium oxide and cryolite aluminium at cathode (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just	•		
Name the metal that is alloyed with copper to make brass. [1] opic Chem 10 Subtopic : Aluminium extraction Q# 4/ iGCSE Chemistry/2011/w/Paper 31/ 3 Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite. waste gases, oxygen and carbon dioxide, from anode (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just	(b) Imp	oure copper is extracted from the ore. This copper is refined by electrolysis.	
opic Chem 10 Subtopic : Aluminium extraction Q# 4/ iGCSE Chemistry/2011/w/Paper 31/ Aluminium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium oxide, and cryolite. waste gases, oxygen and carbon dioxide, from anode carbon cathode (–) mixture of aluminium oxide and cryolite aluminium at cathode (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just	(iii)	· · · · · · · · · · · · · · · · · · ·	alloys.
carbon cathode (-) carbon cathode (-) (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just	3 Alum	10 Subtopic : Aluminium extraction Q# 4/ iGCSE Chemistry/2011/w/Paper 31/ inium is extracted by the electrolysis of a molten mixture of alumina, which is aluminium	[1]
carbon cathode (-) mixture of aluminium oxide and cryolite aluminium at cathode (a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just		oxygen and carbon dioxide,	
carbon cathode (-) ———————————————————————————————————		Irom anode	
carbon cathode (-) ———————————————————————————————————		carbon anode (+)	
(a) (i) Alumina is obtained from the main ore of aluminium. Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just	carbon	mixture of aluminium	
Name this ore. [1] (ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just		aluminium at cathode	
(ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just	(a) (
(ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just			
	(1	ii) Explain why it is necessary to use a mixture, alumina and cryolite, rather than just	
			P

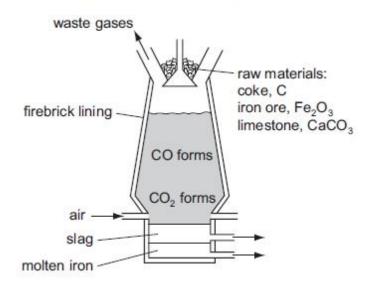
(iii)	Copper can be extracted by the electrolysis of an aqueous solution. Suggest why the electrolysis of an aqueous solution cannot be used to extract aluminium.
	[2]
ele	e ions which are involved in the electrolysis are Al^{3+} and O^{2-} . The products of this ctrolysis are given on the diagram. plain how they are formed. Use equations where appropriate.
	[4]
·	Subtopic : Aluminium extraction Q# 5/ iGCSE Chemistry/2007/s/Paper 3/

- 6 Aluminium is extracted by the electrolysis of a molten mixture that contains alumina, which is aluminium oxide, Al₂O₃.
 - (a) The ore of aluminium is bauxite. This contains alumina, which is amphoteric, and iron(III) oxide, which is basic. The ore is heated with aqueous sodium hydroxide. Complete the following sentences.


The	dissolves to give a solution o	
The	does not dissolve and can be	removed by [4]

(b) Complete the labelling of the diagram.

	(c)	The	e ions that are involved in the electrolysis are $A\hat{\ell}^{*+}$ and O^{2-} .	
		(i)	Write an equation for the reaction at the cathode.	
				[2]
		(ii)	Explain how carbon dioxide is formed at the anode.	
				2]
op 2	Iron	from	O Subtopic: Blast furnace Q# 6/ iGCSE Chemistry/2015/s/Paper 31/ In the Blast Furnace is impure. It contains about 5% of impurities, mainly carbon, sulford phosphorus, which have to be removed when this iron is converted into steel.	ur,
	(a)	equa	lain how the addition of oxygen and calcium oxide removes these impurities. Include ation for a reaction of oxygen and a word equation for a reaction of calcium oxide in theses.	
				[5]
			Subtopic: Blast furnace Q# 7/ iGCSE Chemistry/2014/w/Paper 31/	
1	Iron	is ext	tracted from the ore hematite in the Blast Furnace.	
			raw materials: coke, C iron ore, Fe ₂ O ₂	



(a) The coke reacts with the oxygen in the air to form carbon dioxide.

$$C + O_2 \rightarrow CO_2$$

(i) Explain why carbon monoxide is formed higher in the Blast Furnace.

4 Iron is extracted from the ore hematite in the Blast Furnace.

(a) The coke reacts with the oxygen in the air to form carbon dioxide.

$$\text{C + O}_{\text{2}} \, \rightarrow \, \text{CO}_{\text{2}}$$

(i)	Explain why carbon monoxide is formed higher in the Blast Furnace.
	[2]
(ii)	Write an equation for the reduction of hematite, Fe ₂ O ₃ , by carbon monoxide.
	[2]
(b) (i)	Limestone decomposes to form two products, one of which is calcium oxide. Name the other product.
(ii)	Calcium oxide reacts with silicon(IV) oxide, an acidic impurity in the iron ore, to form slag. Write an equation for this reaction.
	[2]
(iii)	Explain why the molten iron and the molten slag form two layers and why molten iron is the lower layer.
	[2]
(iv)	Suggest why the molten iron does not react with the air.
	[1]

Topic Chem 10 Subtopic: Blast furnace Q# 8/ iGCSE Chemistry/2011/s/Paper 31/ Iron from the blast furnace is impure. It contains about 4 % carbon and 0.5 % silicon. Most of this impure iron is used to make mild steel, an alloy of iron containing less then 0.25% carbon. (a) A jet of oxygen is blown through the molten iron in the presence of a base, usually calcium oxide. Explain how the percentage of carbon is reduced and how the silicon is removed. Topic Chem 10 Subtopic: Blast furnace Q# 9/ iGCSE Chemistry/2008/w/Paper 31/ Q3 (b) (i) Name a reagent that can reduce iron(III) oxide to iron. [1] (ii) Write a symbol equation for the reduction of iron(III) oxide, Fe₂O₃, to iron. [2] Topic Chem 10 Subtopic: Blast furnace Q# 10/ iGCSE Chemistry/2008/w/Paper 31/ Q3 (d) Iron from the blast furnace is impure. Two of the impurities are carbon and silicon. These are removed by blowing oxygen through the molten iron and adding calcium oxide. (i) Explain how the addition of oxygen removes carbon. [1] (ii) Explain how the addition of oxygen and calcium oxide removes silicon. [2] Topic Chem 10 Subtopic: Blast furnace Q# 11/ iGCSE Chemistry/2006/s/Paper 3/ Q1 (c) Iron is extracted in a blast furnace. The list below gives some of the substances used or formed in the extraction. carbon monoxide coke iron ore limestone slag

Topic Chem 10 Subtopic : Blast furnace **Q# 12/** iGCSE Chemistry/2006/s/Paper 3/ Q1

(i) Which substance is a mineral containing largely calcium carbonate?

(d) State two functions of the coke used in the blast furnace.	te two functions of the coke used in the blast furnace.			
	[2]			
Γορίς Chem 10 Subtopic: Properties and uses of metals Q# 13/ iGCSE Chemistry/2014/s/Paper 31/Q5 (b) State two major uses of zinc.	[-]			
	[2]			
 Topic Chem 10 Subtopic: Properties and uses of metals Q# 14/ iGCSE Chemistry/2013/w/Paper 31/ (a) Give three differences in physical properties between the Group I metal, potassium, a the transition element, iron. 	nd			
1				
2				
3	[3]			
Topic Chem 10 Subtopic: Properties and uses of metals Q# 15/ iGCSE Chemistry/2011/w/Paper 31/ Q3 (c) The uses of a metal are determined by its properties.				
(i) Foods which are acidic can be supplied in aluminium containers.				
food that is acidic				
aluminium container				
Explain why the acid in the food does not react with the aluminium.				
	[1]			

	(ii) Explain why overhead electrical power cables are made from aluminium with a steel core.				
			aluminium steel core		
Topic 7		10 Subtopic : Properties and uses of metals Q# 1 nium is a transition element. It is isolated b		[3]	
		titanium ore → titanium(IV) oxide → t	-		
		Complete the table which shows some of t The first line has been completed as an ex	the properties of titanium and its uses.		
		property	related use		
	solu	ble in molten steel	making steel titanium alloys		
			making aircraft and space vehicles		
	resis	stant to corrosion, especially in sea water			
Topic		 10 Subtopic : Properties and uses of metals Q# 1 (i) Give two reasons why copper is used, in electric wiring, 		[2]	
				[2]	
		in cooking utensils.		[2]	
				[2]	
	(ii) Give another use of copper.		[1]	

(d) G	ive two uses of zinc.	
	1.		
	2.		[2]
-		m 10 Subtopic: Properties and uses of metals Q# 19/ iGCSE Chemistry/2007/s/Paper 3/Q6 we an explanation for each of the following.	
	(i)	Aluminium is used extensively in the manufacture of aircraft.	
			[1]
	(ii)	Aluminium is used to make food containers.	
			[2]
	(iii)	Aluminium electricity cables have a steel core.	
-		m 10 Subtopic : Properties and uses of metals Q# 20/ iGCSE Chemistry/2006/s/Paper 3/ Q1 at of the iron is converted into mild steel or stainless steel. Give one use for each	[1]
	mild	steel	
		steel	[2]
Горіс 2	Des	n 10 Subtopic: Reactivity Q# 21/ iGCSE Chemistry/2015/w/Paper 31/ scribe how to separate the following. In each example, give a description of the procedure explain why this method works.	used
	(a)	Copper powder from a mixture containing copper and zinc powders.	
		procedure	
		explanation	
•		m 10 Subtopic : Reactivity Q# 22/ iGCSE Chemistry/2014/s/Paper 31/	
7 (Ino u	you of actablishing a reactivity corios is by displacement reactions	

Topic Chem 10 Subtopic: Properties and uses of metals Q# 18/ iGCSE Chemistry/2007/w/Paper 3/ Q4

- One way of establishing a reactivity series is by displacement reactions.
 - (a) A series of experiments was carried out using the metals lead, magnesium, zinc and silver. Each metal was added in turn to aqueous solutions of the metal nitrates.

The order of reactivity was found to be:

most reactive magnesium zinc lead least reactive silver

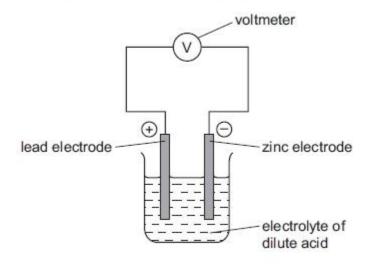
(i) Complete the table.

√ = reacts

X = does not react

	metal					
aqueous solution	lead Pb	magnesium Mg	zinc Zn	silver Ag		
lead(II) nitrate		✓	✓	X		
magnesium nitrate						
zinc nitrate						
silver nitrate						

[3]


(ii) Displacement reactions are redox reactions. On the following equation, draw a ring around the reducing agent and an arrow to show the change which is oxidation.

$$Zn + Pb^{2+} \rightarrow Zn^{2+} + Pb$$
 [2]

(iii) Complete the following ionic equation.

Zn + 2Ag⁺
$$\rightarrow$$
 + [1]

(b) Another way of determining the order of reactivity of metals is by measuring the voltage and polarity of simple cells. The polarity of a cell is shown by which metal is the positive electrode and which metal is the negative electrode. An example of a simple cell is shown below.

(i) Mark on the above diagram the direction of the electron flow.

(ii)	(ii) Explain, in terms of electron transfer, why the more reactive metal is always the nega electrode.					s the negative
						[2]
(iii)	The follo	owing table gives ese.	the polarity of	cells using the r	netals zinc, lead	l, copper and
	cell	electrode 1	polarity	electrode 2	polarity	
	Α	zinc	-	lead	+	
	В	manganese	-	lead	+	
	С	copper	+	lead	_	
	What info	ormation about th	e order of reacti	vity of these four	metals can be	deduced from
(iv)	What ad	ditional information				
						[1]
•		opic : Reactivity Q #			31/Q2	
(b)	The follo	wing metals are	in order of reac	tivity.		
	potassiu zinc copper	m				
	For those metals which react with water or steam, name the products of the reaction otherwise write 'no reaction'.					of the reaction,
potassium						
	zinc					
	copper					
						[5]

Topic Chem 10 Subtopic : Reactivity **Q# 24/** iGCSE Chemistry/2013/s/Paper 31/

- 5 The reactivity series shows the metals in order of reactivity.
 - (a) The reactivity series can be established using displacement reactions. A piece of zinc is added to aqueous lead nitrate. The zinc becomes coated with a black deposit of lead.

$$Zn + Pb^{2+} \rightarrow Zn^{2+} + Pb$$

Zinc is more reactive than lead.

The reactivity series can be written as a list of ionic equations.

..... → + most reactive metal: the best reductant (reducing agent)

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

Fe \rightarrow Fe²⁺ + 2e⁻

Pb \rightarrow Pb²⁺ + 2e⁻

 $Cu \rightarrow Cu^{2+} + 2e^{-}$

 $Ag \rightarrow Ag^+ + e^-$

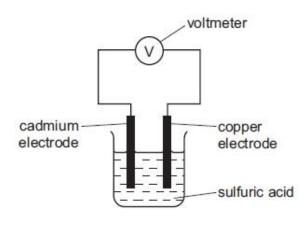
- (i) In the space at the top of the list, write an ionic equation for a metal which is more reactive than zinc.[1]
- (ii) Write an ionic equation for the reaction between aqueous silver(I) nitrate and zinc.

.....[2]

(iii) Explain why the positive ions are likely to be oxidants (oxidising agents).

.....[1]

(iv) Deduce which ion is the best oxidant (oxidising agent).


.....[1]

(v) Which ion(s) in the list can oxidise lead metal?

.....[1]

Topic Chem 10 Subtopic: Reactivity Q# 25/ iGCSE Chemistry/2013/s/Paper 31/

(b) A reactivity series can also be established by measuring the voltage of simple cells. The diagram shows a simple cell.

Results from cells using the metals tin, cadmium, zinc and copper are given in the table below.

Write the four metals in order of increasing reactivity and explain how you used the data

cell	electrode 1 positive electrode		
1	copper		
2 copper		tin	0.48
3	copper	zinc	1.10

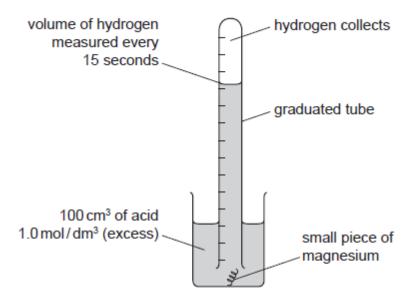
	in the table to determine this order.
	[3]
Topic	Chem 10 Subtopic: Reactivity Q# 26/ iGCSE Chemistry/2012/s/Paper 31/
5	Reactive metals tend to have unreactive compounds. The following is part of the reactivity series.
	sodium most reactive calcium zinc copper silver least reactive
(c)	Which of the metals in the list on page 5 have oxides which are not reduced by carbon?
	[1]
(d)	Choose from the list on page 5, metals whose ions would react with zinc.

Topic Chem 10 Subtopic : Reactivity **Q# 27/** iGCSE Chemistry/2011/s/Paper 31/

7 Excess hydrochloric acid was added to powdered zinc. The hydrogen evolved was collected and its volume measured every 20 seconds.

The experiments were repeated at the same temperature using the same number of moles of powdered magnesium and aluminium.

.....[2]

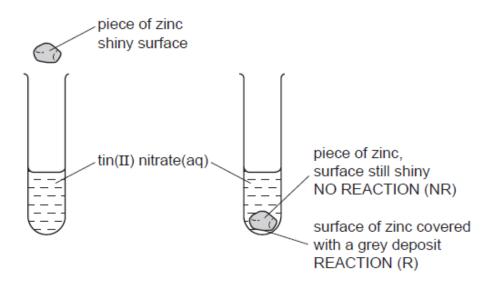


(a)	Identify metals A, B and C by choosing from zinc, magnesium and aluminium. Give a reason for each choice.
	metal A
	metal B
	metal C
(b)	Using 'moles', explain why two of the metals form the same volume of hydrogen but the third metal forms a larger volume.
	[3]
(c) The	n 10 Subtopic : Reactivity Q# 28/ iGCSE Chemistry/2010/w/Paper 31/ Q2 common ore of tin is tin(IV) oxide and an ore of copper is malachite, $CO_3.Cu(OH)_2$.
(i)	Write a word equation for the reduction of tin(IV) oxide by carbon.
(ii)	Malachite is heated to form copper oxide and two other chemicals. Name these chemicals.
	and [2]
(iii)	Copper oxide is reduced to copper which is then refined by electrolysis. Label the diagram of the apparatus which could be used to refine copper.
	power supply The supply suppl

	(iv)	Give one use of copper, other than making alloys.	
		[1]
Тор		n 10 Subtopic : Reactivity Q# 29/ iGCSE Chemistry/2010/s/Paper 31/	
7	Tita	anium is a transition element. It is isolated by the following reactions.	
		titanium ore \rightarrow titanium(IV) oxide \rightarrow titanium(IV) chloride \rightarrow titanium TiO $_2$ TiC l_4 Ti	
	(a)	Why is it usually necessary to include a number in the name of the compounds transition elements?	of
		[1]
	(b)	Titanium(IV) chloride is made by heating the oxide with coke and chlorine.	
		$TiO_2 + 2Cl_2 \rightleftharpoons TiCl_4 + O_2$	
		2C + O ₂ ⇌ 2CO	
		Explain why the presence of coke ensures the maximum yield of the metal chloride.	
		[2]
	(c)	Explain why the change, titanium(IV) chloride to titanium, is reduction.	
			1]

Topic Chem 10 Subtopic: Reactivity Q# 30/ iGCSE Chemistry/2010/s/Paper 31/

3 A diagram of the apparatus which could be used to investigate the rate of reaction between magnesium and an excess of an acid is drawn below.



t	(a) The magnesium kept rising to the surface. In one experiment, this was preve twisting the magnesium around a piece of copper. In a second experiment, the magnesium around a piece of the beaker.					
(i) Suggest a reason why magnesium, which is denser than water, floated to the surface.						
			[1]			
(ii		have similar densities. Why down the magnesium?	was copper a better choice than			
			[1]			
Topic Chem 1	.0 Subtopic : Reactivity Q# 3 :	1/ iGCSE Chemistry/2009/s/Paper	31/			
			niliar and unfamiliar elements. r common oxidation states are			
	* barium	Ва]			
	* lanthanum	La (+3)	1			
	magnesium		1			
	zinc		1			
	* chromium	Cr (+2), (+3), (+6)				
	iron					
	copper		1			
	* palladium	(+2)				
Choos	e metal(s) from the above	list to answer the following q	uestions.			
	• •	d not react with dilute hydrocl				
(1)	Willett (Wo metals would	a not react with dilute hydroci				
			[2]			
(ii)	Which two unfamiliar m	etals (*) would react with cold	water?			
			[2]			
(iii)	What is the oxidation st					
			[1]			
<i>t:</i> - A		tal /*\ whase suide connet ha				
(IV)	name an untamiliar me	tal (*) whose oxide cannot be	reduced by carbon.			
			[1]			

(v)	Why should you be able to predict that metals such as iron and chromium hamore than one oxidation state?	ive
		[1]

Topic Chem 10 Subtopic: Reactivity Q# 32/ iGCSE Chemistry/2008/w/Paper 31/

- 6 The reactivity series lists metals in order of reactivity.
 - (a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out.

This experiment could be carried out with other metals and the results recorded in a table. Then the order of reactivity can be deduced.

(i) The order was found to be:

manganese

most reactive

zinc

tin

silver

least reactive

Complete the table of results from which this order was determined.

aqueous	tin	manganese	silver	zinc
solution	Sn	Mn	Ag	Zn
tin(II) nitrate		R	NR	R
manganese(II) nitrate				
silver(I) nitrate				
zinc nitrate				

[3]

(ii) Write the ionic equation for the reaction between tin atoms and silver(I) ions.

(iii)	The	following is a redox reaction.
		$Mn + Sn^{2+} \longrightarrow Mn^{2+} + Sn$
		cate on the equation the change which is oxidation. e a reason for your choice.
		[2]
(iv)		lain why experiments of this type cannot be used to find the position of minium in the reactivity series.
		[2]
Topic C	Chem :	10 Subtopic : Reactivity Q# 33/ iGCSE Chemistry/2007/w/Paper 3/ Q4
(c)	is ele	remaining zinc oxide reacts with sulphuric acid to give aqueous zinc sulphate. This ectrolysed with inert electrodes (the electrolysis is the same as that of per(II) sulphate with inert electrodes). Sepresent: Zn ²⁺ (aq) SO ₄ ²⁻ (aq) H ⁺ (aq) OH ⁻ (aq)
	(i)	Zinc forms at the negative electrode (cathode). Write the equation for this reaction.
	(ii)	Write the equation for the reaction at the positive electrode (anode).
		[2]
	(iii)	The electrolyte changes from aqueous zinc sulphate to
•	a) T	[1] 10 Subtopic : Reactivity Q# 34/ iGCSE Chemistry/2007/s/Paper 3/ itanium is produced by the reduction of its chloride. This is heated with magnesium in n inert atmosphere of argon.
		$TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$
	(i	Explain why it is necessary to use argon rather than air.

[1]

Patrick Brannac

(ii) Name another metal that would reduce titanium chloride to titanium.

Topic Chem 10 Subtopic: Thermal decomposition Q# 35/ iGCSE Chemistry/2012/s/Paper 31/ Q5

- (b) All nitrates decompose when heated.
 - (i) The equation for the thermal decomposition of silver(I) nitrate is given below.

$$2 {\rm AgNO_3} \, o \, 2 {\rm Ag} \, + \, 2 {\rm NO_2} \, + \, {\rm O_2}$$
 What are the products formed when copper(II) nitrate is heated?

(ii)	Complete the equation for the action of heat on sodium nitrate.

NaNO ₃ -	→	+	
			[2]

.....[1]

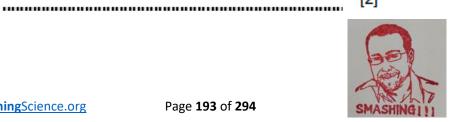
Topic Chem 10 Subtopic: Thermal decomposition Q# 36/ iGCSE Chemistry/2011/w/Paper 31/

Some hydroxides, nitrates and carbonates decompose when heated.

Suggest why these two hydroxides behave differently.

- (a) (i) Name a metal hydroxide which does not decompose when heated.[1]
 - (ii) Write the equation for the thermal decomposition of copper(II) hydroxide.
 -[2]
 -[1]
- (b) (i) Metal nitrates, except those of the Group 1 metals, form three products when heated. Name the products formed when zinc nitrate is heated.

	[2]


(ii) Write the equation for the thermal decomposition of potassium nitrate.

[2]

Topic Chem 10 Subtopic: Thermal decomposition Q# 37/ iGCSE Chemistry/2008/w/Paper 31/ Q6 (b)

Their hydroxides are heated. If the compound decomposes, complete the word equation. If it does not decompose, write "no reaction".

Potassium hydroxide	
Calcium hydroxide	[:

(iii) Co	mplete the equations for the decomposition of their nitrates.
21	(NO ₃ → +
	Ca(NO ₃) ₂ + + [4]
opic Chem 10	Subtopic : Zinc extraction Q# 38/ iGCSE Chemistry/2014/s/Paper 31/
Zinc is o	btained from the ore, zinc blende, ZnS.
	cribe the extraction of zinc from its ore, zinc blende. Include at least one balanced equation our description.
opic Chem 10	Subtopic : Zinc extraction Q# 39/ iGCSE Chemistry/2011/s/Paper 31/
	or ore of zinc is zinc blende, ZnS. A by-product of the extraction of zinc from this ore is dioxide which is used to make sulfuric acid.
(a) (i	Zinc blende is heated in air. Zinc oxide and sulfur dioxide are formed. Write the balanced equation for this reaction.
	[2]
(ii)	Zinc oxide is reduced to zinc by heating with carbon. Name two other reagents which could reduce zinc oxide.
	[2]
(iii)	The zinc obtained is impure. It is a mixture of metals. Explain how fractional distillation could separate this mixture. zinc bp = 908 °C, cadmium bp = 765 °C, lead bp = 1751 °C
	[2]
•	Subtopic: Zinc extraction Q# 40/ iGCSE Chemistry/2009/w/Paper 3/ important ore of zinc is zinc blende, ZnS.
(i)	How is zinc blende changed into zinc oxide?
	[1]
(ii)	Write a balanced equation for the reduction of zinc oxide to zinc by carbon.
	[2]

Topic Chem 10 Subtopic: Zinc extraction Q# 41/ iGCSE Chemistry/2007/w/Paper 3/ Q4

(b) Some of the zinc oxide was mixed with an excess of carbon and heated to 1000 °C Zinc distils out of the fumace.

$$2ZnO + C \rightleftharpoons 2Zn + CO_2$$

 $C + CO_2 \rightarrow 2CO$

(ii) Why is it necessary to use an excess of carbon?

[2]

Mark Scheme iG Chem 10 P3 Metals 15w to 06s

Q# 1/ iGCSE Chemistry/2015/s/Paper 31/

2(b)(ii) Any one from: (making) car (bodies); machinery; chains; pylons; white goods; nails; screws; as a building material; sheds /roofs; reinforcing concrete; 2(b)(iii) Any one from: knives; drills; railway tracks; machiner (cutting tools / hammers; razor blades; chisels; 2(b)(iiii) M1 atoms or cations or (positive) ions or metal ions; M2 arranged in a lattice or in layers or in rows or in a regular structure; M3 rows or layers slide over one another; 2(b)(iv) M1 carbon atoms or particles in structure different size (to cations); M2 so reduce moving or interrupt movement; A bridges A tools I cuttery I cuttery I cuttery items I bridges I cuttery items I bridges I functions I functions I (sea of) electrons R protons or nuclei for M1 A M2 non-directional forces 3 A ECF on particle named in M1 for M3 I atoms slide over one another R ions and molecules for M1 A M2 so reduce moving or interrupt movement; R ions and molecules for M1	(# 1/ 16C	SE Chemistry/2015/s/Paper 31/		
knives; drills; railway tracks; machine/ cutting tools / hammers; razor blades; chisels; 2(b)(iii) M1 atoms or cations or (positive) ions or metal ions; M2 arranged in a lattice or in layers or in rows or in a regular structure; M3 rows or layers slide over one another; 3 A ECF on particle named in M1 for M3 I atoms' slide over one another 2(b)(iv) M1 carbon atoms or particles in structure different size (to cations); M2 so reduce moving or interrupt movement; 2 A M2 for prevents sliding	2(b)(i)	(making) car (bodies); machinery; chains; pylons; white goods; nails; screws; as a building material; sheds/roofs;	1	A tools
M2 arranged in a lattice or in layers or in rows or in a regular structure; M3 rows or layers slide over one another; 3 A ECF on particle named in M1 for M3 I 'atoms' slide over one another 2(b)(iv) M1 carbon atoms or particles in structure different size (to cations); M2 so reduce moving or interrupt movement; 2 A M2 for prevents sliding	2(b)(ii)	knives; drills; railway tracks; machine/ cutting tools/hammers; razor blades;	1	
M2 so reduce moving or interrupt movement; 2 A M2 for prevents sliding	2(b)(iii)	M2 arranged in a lattice or in layers or in rows or in a regular structure;	3	R protons or nuclei for M1 A M2 non-directional forces A ECF on particle named in M1 for M3
	2(b)(iv)	,	2	A M2 for prevents sliding

Q# 2/ iGCSE Chemistry/2011/s/Paper 31/Q3

- (b) (i) any sensible suggestion harder/stronger/can be tailored for a specific use/more resistant to corrosion [1]
 not steel does not rust
 - (ii) mild steel cars or any vehicle/bicycles/white goods/screws or nails/roof/bridges/tools/ buildings/ships/pipes/machinery etc.

stainless steel – chemical plants/cooking utensils/jewellery/cutlery/surgical equipment/kitchen sinks/pipes/etc. [1]

Q# 3/ iGCSE Chemistry/2006/w/Paper 3/ Q6 (b)

(iii) Zinc [1]

Q# 4/ iGCSE Chemistry/2011/w/Paper 31/

3 (a) (i) bauxite

- [1]
- (ii) lowers melting point [1]
 better conductor / reduces amount of energy needed / reduces cost / more
 economic / makes process viable / conserves energy [1]
- (iii) aluminium more reactive than copper / aluminium higher in reactivity series [1] hydrogen not aluminium formed at cathode [1]
- (b) $Al^{3+} + 3e \rightarrow Al$ [1] $2O^{2-} \rightarrow O_2 + 4e$

note: not balanced = 1

oxygen reacts with carbon (anode) to form carbon dioxide / $C + O_2 \rightarrow CO_2$ [1]

note: if mark(s) for an electrode reaction are not awarded then allow aluminium ions accept electrons / are reduced
[1]

oxide ion loses electrons / is oxidised [1]

max 4

Q# 5/ iGCSE Chemistry/2008/s/Paper 31/

- 6 (a) alumina or aluminium oxide [1] sodium aluminate [1] iron(III) oxide [1] filtration or centrifuge NOT conditional [1]
 - (b) from left to right:

 carbon cathode or carbon negative electrode
 900 to 1000°C
 aluminium
 cryolite

 [1]
 - (c) (i) $Al^{3+} + 3e = Al$ [2] not balanced [1] $Al^{3+}(aq) = 0$
 - (ii) oxygen is formed NOT oxide [1] reacts with carbon anode [1]

Q# 6/ iGCSE Chemistry/2015/s/Paper 31/

Question	Answer	Marks	Guidance
2(a)	M1 Forming an oxide (all) elements or (all) impurities become oxides;		(All) elements or (all) impurities react with oxygen A M1 for any one element becoming an oxide
	M2 Gaseous oxides carbon dioxide or sulfur (di)oxide escape/are removed as gases;		A formulae/carbon monoxide A oxides of sulfur/carbon I sulfur trioxide
	M3 Acidic oxides silicon(IV) oxide or phosphorus(III/V) oxide react/are neutralised by calcium oxide/lime;		A silicon (di)oxide for silicon(IV) oxide A phosphorus (tri/pent)oxide for phosphorus(III/V) oxide
	M4 Equation mark any one of the following equations $S + O_2 \rightarrow SO_2;$ $C + O_2 \rightarrow CO_2 \text{ or } 2C + O_2 \rightarrow 2CO;$ $Si + O_2 \rightarrow SiO_2;$ $4P + 5O_2 \rightarrow 2P_2O_5 \text{ or } P_4 + 5O_2 \rightarrow 2P_2O_5;$ $4P + 3O_2 \rightarrow 2P_2O_3 \text{ or } P_4 + 3O_2 \rightarrow 2P_2O_3;$		A multiples I state symbols I unbalanced equations R other combustion equations with incorrect species
	M5 Word equation mark any one of the following word equations calcium oxide + silicon(IV) oxide → calcium silicate; calcium oxide + phosphorus(III/V) oxide → calcium phosphate;	5	A calcium oxide + silicon(IV) oxide → slag A correct symbol equation for M5 but R other equations with incorrect species used as M5

Q# 7/ iGCSE Chemistry/2014/w/Paper 31/ (a) (i) insufficient/limited oxygen

[1] or 2C + $O_2 \rightarrow 2CO$

coke/carbon reacts with carbon dioxide [1] or C + $CO_2 \rightarrow 2CO$

(ii) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ species (1) balancing (1) [2]

(b) (i) carbon dioxide [1]

(ii) CaO + SiO₂ → CaSiO₃ [2] [1] each side correct

(iii) (molten) iron higher density (than slag) [2]

(iv) No oxygen in contact with iron or layer of slag prevents hot iron reacting with oxygen/air or (all) oxygen reacts with carbon (so no oxygen left to react with iron)

[1]

Q# 8/ iGCSE Chemistry/2011/s/Paper 31/

(a) any four max 4 carbon forms carbon dioxide / carbon monoxide [1] this is a gas it escapes / blown out / diffuses [1] silicon forms silicon(IV) oxide / silica [1] / silicon(IV) oxide present in impure iron silicon(IV) oxide reacts with calcium oxide to form slag or calcium silicate [1] slag removed from surface [1] accept skimmed, syphoned, poured off max [4] not tapped

accept correct formula or equations not calcium oxide reacts with silicon

Q# 9/ iGCSE Chemistry/2008/w/Paper 31/ Q3

(b) (i) hydrogen or carbon or carbon monoxide or methane or more reactive metal NOT Group I [1]

(ii) any correct equation [2] only error not balanced [1]

Q# 10/ iGCSE Chemistry/2008/w/Paper 31/ Q3

- (d) (i) forms carbon dioxide/carbon monoxide (which escapes) [1]
 - (ii) forms silicon(IV) oxide or silicon oxide or silica [1] OR CaO reacts with SiO₂ to form slag or calcium silicate [1] ignore an incorrect formula if a correct name "slag" given NOT Si + O₂ + CaO form slag, this gains mark for slag only

Q# 11/ iGCSE Chemistry/2006/s/Paper 3/Q1

(c) (i) limestone

(ii) slag

(iii) iron ore

[1]

Q# 12/	iG(SE C	hemistry/2006/s/Paper 3/ Q1	
(d)			or provide heat e carbon monoxide	[1] [1]
Q# 13/	iG	SE C	hemistry/2014/s/Paper 31/	
	(b)	An	y two from:	[2]
Q# 14/ 2		iron iron iron iron iron iron NO	(making) brass or alloys (1) galvanising (1) sacrificial protection (1) batteries (1) hemistry/2013/w/Paper 31/ y three of: n is harder n has higher density CCEPT: heavier or potassium lighter n has higher mp or bp n has higher tensile strength or stronger n has magnetic properties OTE: has to be comparison, e.g. iron is hard (0) but iron is harder (1) OT: appearance e.g. shiny	[3]
			CCEPT: comparative statements relating to potassium	
Q# 15/	iG(SE C	hemistry/2011/w/Paper 31/ Q3	
(c)	(i)	pro	otective oxide layer	[1]
	(ii)	alu str	uminium is a good conductor ength / prevent sagging / allows greater separation of pylons / core made	[1] [1] of [1]
Q# 16/	iG(SE C	hemistry/2010/s/Paper 31/	
	(d	pro	opellers / fittings on ships / inert anodes in electrolysis / hip replacements /	[1] [1]
Q# 17/	iG(SE C	hemistry/2008/s/Paper 31/ Q3	
	(c)	(i)	good conductor malleable or ductile	[1] [1]
			good conductor of heat high melting point (and high boiling point) unreactive or resists corrosion appearance	
			any TWO	[2]
			do not accept malleable or ductile if either is given for wiring	
		(ii)	alloys or named alloy or pipes or ornaments or jewellery or integrated circuit boards electroplating or roofs, etc.	or [1]
Q# 18/	iG	SE C	hemistry/2007/w/Paper 3/ Q4	
(d)	ma ele cel roc	king ctrop s fing	t iron from rusting NOT with galvanising or sacrificial protection brass or making alloys NOT bronze plating or as an electrode in electrolysis	
	coi	nage		
	ΤV	/O u	ses	[2]

Q# 19/ iGCSE Chemistry/2008/s/Paper 31/Q6

(d) (i) low density or light or resistant to corrosion accept strength/weight ratio or alloys are strong strong on its own is neutral

[1]

(ii) not attacked or corroded or unreactive oxide layer easily shaped or malleable or ductile any TWO

[2]

(iii) for strength or so it does not break or does not sag or can have pylons further apart [1]

NOT steel is a better conductor

NOT aluminium protects steel from rusting

Q# 20/ iGCSE Chemistry/2006/s/Paper 3/Q1

(e) mild steel cars or machinery or fridges etc. stainless steel cutlery or chemical plants etc.

[1] [1]

Q# 21/ iGCSE Chemistry/2015/w/Paper 31/

Question	Answer	Marks
2(a)	add a (dilute) acid;	1
	filter;	1
	copper does not react or dissolve/zinc reacts or dissolves or forms a salt;	1

Q# 22/ iGCSE Chemistry/2014/s/Paper 31/

7 (a) (i)

aqueous solution	lead Pb	magnesium Mg	zinc Zn	silver Ag
lead (II) nitrate		><	><	><
magnesium nitrate	Χ×		×	×
zinc nitrate	×	~		*
silver(I) nitrate	✓	~	✓	

each horizontal line correct (1) [3]

(ii) Zn (1)

An arrow from Zn to Zn2+ (1) [2]

(iii) $Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$ (1) [1]

(b) (i) correct direction from zinc to lead (1) [1]

(ii) metals react by losing electrons (1)

the more reactive metal/zinc will lose electrons more readily (making the electrode negatively charged). (1) [2]

(iii)	ma	inganese ar	nd zinc are more reactive than lead (and/or copper) (1)		
	lea	d is more re	eactive than copper (1)	[2]	l
(iv)			f a Mn/Zn (cell) es of Zn/Pb and Mn/Pb (cells) (1)	[1]]
Q# 23	/ iGC	SE Chemistry	ı/2013/w/Paper 31/		
	(b)	potassium zinc copper	hydrogen (1) and potassium hydroxide (1) hydrogen (1) and zinc oxide (1) no reaction (1)		[5]
Q# 24	/ iGC	SE Chemistry	y/2013/s/Paper 31/		
5	(a)		al above zinc g ²⁺ + 2e ⁻	[[1]
	(g ⁺ → Zn ²⁺ + 2Ag of balanced only [1]	[[2]
	(i	ii) because	they can accept or gain electrons / change into atoms or can be reduced		[1]
	i)	v) Ag⁺orsi charge n	ilver not essential but if given must be correct	[[1]
	(Cu ²⁺ or silver and copper not essential but if given must be correct	[[1]
Q# 25	/ iGC	SE Chemistry	1/2013/s/Paper 31/		
		n Cd Zn (i.e. es order to v	. all 4 in correct order) oltage	[1] [1]	
	one	elevant com	nment from:	[1]	
	posit bigge	ive electrode er the differe	metals are the negative electrode / copper is least reactive because it is the because copper would have the lowest voltage / copper cell V = 0 / the nce in reactivity, the bigger the voltage / zinc has highest voltage because more reactive metals have higher voltage		
Q# 26	/ iGC	SE Chemistry	y/2012/s/Paper 31/ Q5		
(c)	Na	/ Ca;			[1]
(d)	Cu;		Cu ²⁺ and Ag ⁺		[2]
Q# 27	/ iGC	SE Chemistry	y/2011/s/Paper 31/		
7		metal A is n	nagnesium reactive or fastest reaction		[1] [1]
			aluminium r reaction after removal of oxide layer / it would give more hydroge ve than zinc	n / alı	[1] uminium [1]
		metal C is z zinc least re NOTE MAX If you encor	eactive	ate m	[1] [1] arks.
		,			

	(b)	for magnesium and zinc same volume of hydrogen	[1]
		because both have valency of 2 / 1 mole of metal gives 1 mole of hydrogen / 1 mereacts with 2 moles of acid	ole of metal [1]
		bigger volume for aluminium because its valency is 3 / 1 mole of metal gives 1 hydrogen / 1 mole of metal reacts with 3 moles of acid	.5 moles of [1]
		If you encounter different reasoning which is correct, please award the appropriate	marks.
		accept balanced equations accept ionic charges as alternative to valency	
Q# 2	8/ iG0	CSE Chemistry/2010/w/Paper 31/ Q2	
(c)	(i)	tin(IV) oxide + carbon → tin + carbon dioxide not carbon monoxide as a reductant accept carbon monoxide as a product not tin(IV) accept correct symbol equation	[1]

	(11)	water carbon dioxide	[1] [1]
	(iii)	correct labels for (pure) copper cathode impure copper anode electrolyte copper(II) sulfate / any soluble copper(II) salt / Cu ²⁺	[1] [1] [1]
		if labels on electrodes reversed [0]	
	(iv)	wires / pipes / jewellery / nails / roofing / ammunition / coins / cookware / casculpture	atalyst / [1]
Q# 2	9/ iG0	CSE Chemistry/2010/s/Paper 31/	
7	(a)	 a transition element has more than one oxidation state or valency accept different oxidation states 	[1]
	(b	b) by removing oxygen concentration of O ₂ decreases prevents the back reaction / equilibrium shifts to right	[1] [1]
	(c)	oxidation number reduced (from (+) 4 to 0) accept accepts electrons or accepts four electrons if number given must be 4	[1]
Q# 3	0/ iG0	CSE Chemistry/2010/s/Paper 31/	
3	(a)) (i) bubbles / effervescence / hydrogen / gas pushes up / lifts metal	[1]
		(ii) does not react with <u>acid</u> / zinc and iron react with <u>acid</u> not just unreactive	[1]

Q# 31/ iGCSE Chemistry/2009/s/Paper 31/

- 4 (i) Cu and Pd
 - (ii) Ba and La [2]
 - (iii) +2 or 2+ or Ba^{2+} [1]
 - (iv) Ba or La [1]
 - (v) it is a transition metal or a d block element [1]

Q# 32/ iGCSE Chemistry/2008/w/Paper 31/

6 (a) (i)

aqueous solution	tin Sn	manganese Mn	silver Ag	zinc Zn
tin(II) nitrate		R	NR	R
manganese(II) nitrate	NR		NR	NR
silver(I) nitrate	R	R		R
zinc nitrate	NR	R	NR	

- [1] for each row [3] ignore anything written in blank space
- (ii) Sn + 2Ag⁺ → Sn²⁺ + 2Ag
 all species correct [1]
 accept equation with Sn⁴⁺
- (iii) Mn to Mn²⁺ need both species [1] electron loss **or** oxidation number increases
- (iv) covered with oxide layer [1] makes it unreactive or protects or aluminium oxide unreactive [1]

Q# 33/ iGCSE Chemistry/2007/w/Paper 3/ Q4

(c) (i)
$$Zn^{2+} + 2e = Zn$$

(ii)
$$4OH^{-} - 4e = O_{2} + 2H_{2}O$$
 [2]
or $4OH^{-} = O_{2} + 2H_{2}O + 4e$
or $2H_{2}O = 4H^{+} + O_{2} + 4e$
or $2H_{2}O - 4e = 4H^{+} + O_{2}$
oxygen as product [1]

(iii) sulphuric acid

NOTE there are no alternative answers to the above

Q# 34/ iGCSE Chemistry/2008/s/Paper 31/

- 5 (a) (i) air would react (with the magnesium or titanium)
 OR argon would not react (with the metals)
 NOT argon is inert

 [1]
 - (ii) any metal higher than magnesium in reactivity series [1]

Q# 35/ iGCSE Chemistry/2012/s/Paper 31/

- (b) (i) CuO and NO₂ and O₂; [1] accept: names or correct formulae
 - (ii) 2NaNO₃ → 2NaNO₂ + O₂ accept: NaNO₃ → NaNO₂ + 1/2 O₂ not balanced = [1]

[1]

[2]

Q# 36/ iGCSE Chemistry/2011/w/Paper 31/

(a) (i) any Group 1 metal accept: LiOH

[1]

(ii) $Cu(OH)_2 \rightarrow CuO + H_2O$ note: products only = 1

[2]

(iii) reactivity of metals / metals have different reactivities

[1]

(b) (i) zinc oxide, nitrogen dioxide, oxygen note: two correct = 1

[2]

(ii) 2KNO₃ → 2KNO₂ + O₂

[2]

- note: unbalanced = 1, correct word equation = 1
- **Q# 37/** iGCSE Chemistry/2008/w/Paper 31/6 (b)
 - (ii) potassium hydroxide → no reaction calcium hydroxide → calcium oxide and water ACCEPT metal oxide

[1] [1]

- (iii) $2KNO_3 \rightarrow 2KNO_2 + O_2$
 - [1] for formula of either product

[2]

 $2Ca(NO_3)_2 \rightarrow 2CaO + 4NO_2 + O_2$ [1] for formulae of any TWO products

[2]

- Q# 38/ iGCSE Chemistry/2014/s/Paper 31/
 - 5 (a) M1: (zinc sulfide) heated/roasted/burnt in air (1)
 - M2: zinc oxide formed (1)
 - M3: zinc oxide reduced (1)
 - M4: (by adding) coke or carbon (1)
 - M5: Balanced equation (any one of) (1)

[5]

2ZnS +
$$3O_2 \rightarrow 2ZnO + 2SO_2$$

$$2ZnO + C \rightarrow 2Zn + CO_2$$

$$ZnO + C \rightarrow Zn + CO$$

$$ZnO + CO \rightarrow Zn + CO_2$$

- Q# 39/ iGCSE Chemistry/2011/s/Paper 31/
 - (a) (i) $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ not balanced only [1]

- [2]
- (ii) two reagents from named metal(s) more reactive than zinc/carbon monoxide not hydrogen
- [2]

[1]

[1]

- (iii) they have different boiling points cadmium will distil first then zinc leaving lead/lead distilled last

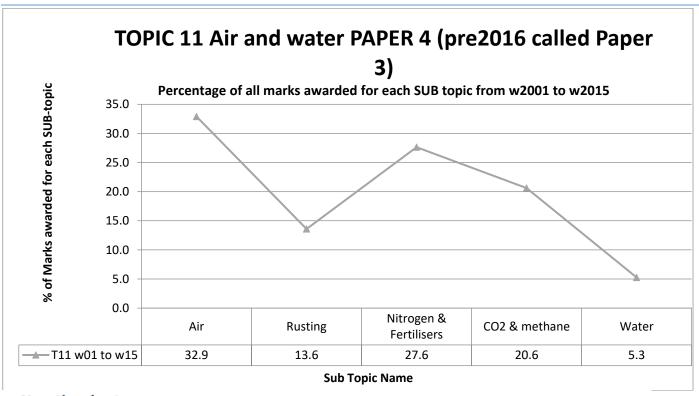
- Q# 40/ iGCSE Chemistry/2009/w/Paper 3/
 - (a) (i) heat or roast or burn in air need both points for mark

(ii) $ZnO + C \rightarrow Zn + CO$ or $2ZnO + C \rightarrow 2Zn + CO_2$ unbalanced ONLY [1]

(ii) to get maximum yield of zinc or reduce all zinc oxide

[1]

NOTE the above mark is awarded for why add excess carbon moves equilibrium to right or to favours the products or removes CO₂ from equilibrium


[1]

NOTE this mark is awarded for how does the addition of excess carbon give max yield of zinc

NOTE Allow any coherent explanation <u>flexibly</u> based on the above ideas EXAMPLES:

moves equilibrium to right [1] because carbon dioxide removed [1] to get maximum yield of zinc [1] as equilibrium moves to right [1] **NOT** just to make CO from CO₂

iG Chem 11 EQ P5 15w to 01w Air and Water Broken down by subtopic 124marks

11 Air and water

11.1 Water

Patrick Brannac

Core

- Describe chemical tests for water using cobalt(II) chloride and copper(II) sulfate
- Describe, in outline, the treatment of the water supply in terms of filtration and chlorination
- Name some of the uses of water in industry and in the home

Supplement

 Discuss the implications of an inadequate supply of water, limited to safe water for drinking and water for irrigating crops

11.2 Air

Core

- State the composition of clean, dry air as being approximately 78% nitrogen, 21% oxygen and the remainder as being a mixture of noble gases and carbon dioxide
- Name the common pollutants in the air as being carbon monoxide, sulfur dioxide, oxides of nitrogen and lead compounds
- State the source of each of these pollutants:
 - carbon monoxide from the incomplete combustion of carbon-containing substances
 - sulfur dioxide from the combustion of fossil fuels which contain sulfur compounds (leading to 'acid rain')
 - oxides of nitrogen from car engines
 - lead compounds from leaded petrol
- State the adverse effect of these common pollutants on buildings and on health and discuss why these pollutants are of global concern
- State the conditions required for the rusting of iron
- Describe and explain methods of rust prevention, specifically paint and other coatings to exclude oxygen

Supplement

- Describe the separation of oxygen and nitrogen from liquid air by fractional distillation
- Describe and explain the presence of oxides of nitrogen in car engines and their catalytic removal

 Describe and explain sacrificial protection in terms of the reactivity series of metals and galvanising as a method of rust prevention

11.3 Nitrogen and fertilisers

Core

- Describe the need for nitrogen-, phosphorus- and potassium-containing fertilisers
- Describe the displacement of ammonia from its salts

Supplement

 Describe and explain the essential conditions for the manufacture of ammonia by the Haber process including the sources of the hydrogen and nitrogen, i.e. hydrocarbons or steam and air

11.4 Carbon dioxide and methane

Core

- State that carbon dioxide and methane are greenhouse gases and explain how they may contribute to climate change
- State the formation of carbon dioxide:
 - as a product of complete combustion of carbon-containing substances
 - as a product of respiration
 - as a product of the reaction between an acid and a carbonate
 - from the thermal decomposition of a carbonate
- State the sources of methane, including decomposition of vegetation and waste gases from digestion in animals

Supplement

 Describe the carbon cycle, in simple terms, to include the processes of combustion, respiration and photosynthesis

Topic	Che	m 11	SubTopic: Air Q# 1/ iGCSE Chemistry/2009/w/Paper 3/	
1	(a)	The	e major gases in unpolluted air are 79% nitrogen and 20% oxygen.	
		(i)	Name another gaseous element in unpolluted air.	
				[1]
		/::\		
		(ii)	Name two compounds in unpolluted air.	
				[2]
Topic	Che	m 11	SubTopic: Air Q# 2/ iGCSE Chemistry/2009/w/Paper 3/ Q4	
(c)		s no H ₃) ₂	ow known that the smell of the seaside is due to the chemical dimethyl sulfices.	de,
(ii)		me ygei	the three compounds formed when dimethyl sulfide is burnt in excess n.	
	••••			
				[2]
Tonio	Che	m 11	SubTopic: Air Q# 3/ iGCSE Chemistry/2009/w/Paper 3/ QiGCSE Chemistry/201	[2]
-			ommon pollutants in air are carbon monoxide and the oxides of nitrogen.	
	(i)	ING	ame another pollutant in air.	
				[1]
	(ii)	De	escribe how carbon monoxide is formed.	
		•••		
		•••		
				[2]
	(iii)	Н	ow are the oxides of nitrogen formed?	
				[2]

	(IV)	Explain now a catalytic converter reduces the emission of these two gases.	
			[2]
Горіс (Chem	11 SubTopic: Air Q# 4/ iGCSE Chemistry/2010/s/Paper 31/ Q2	
(ii)		loromethane is formed when seaweed decomposes. Name the compounds in the vironment from which seaweed might have obtained the following elements:	he
	car	rbon;	
	пус	drogen;	
	chl	orine.	[3]
Горіс (Chem	11 SubTopic: Air Q# 5/ iGCSE Chemistry/2010/s/Paper 31/ Q2	
(iv)	The oxides of nitrogen are atmospheric pollutants. Describe how they are forme	ed.
			[2]
(v)	Complete the equation for the decomposition of ozone.	
		O ₃ →	
			[2]
•		11 SubTopic: Air Q# 6/ iGCSE Chemistry/2011/w/Paper 31/	
1	Inis	s question is concerned with the following oxides.	
		sulfur dioxide	
		carbon monoxide	
		lithium oxide aluminium oxide	
		aluminum oxide	

nitrogen dioxide strontium oxide

(b)			the oxides are responsible for acid rain. the two oxides and explain their presence in the atmosphere.	
Topic	 Cher	n 11	SubTopic: Air Q# 7/ iGCSE Chemistry/2012/s/Paper 31/Q1	5]
			Explain how acid rain is formed.	
			[4]	
Topic	Cher	n 11	SubTopic: Air Q# 8/ iGCSE Chemistry/2012/w/Paper 31/ Q3	
(c)	Cat	alyti	c converters reduce the pollution from motor vehicles.	
and			of nitrogen monoxide less harmful gases to atmosphere	
			catalysts: rhodium, platinum, palladium	
	(i)	Des	scribe how carbon monoxide and the oxides of nitrogen are formed in car engine	S.
			[4]

(11)		scribe the reaction(s) inside the catalytic converter which change these pollutants believed less harmful gases. Include at least one equation in your description.
5 Thre	ee co	SubTopic: Air Q# 9/ iGCSE Chemistry/2014/w/Paper 31/ ommon pollutants in the air are carbon monoxide, the oxides of nitrogen, NO and NO ₂ , and hydrocarbons. They are all emitted by motor vehicles.
(a)	Des	cribe how the oxides of nitrogen are formed.
		[2]
(b)	Des	cribe how a catalytic converter reduces the emission of these three pollutants.
		[4]
(c)		er atmospheric pollutants are lead compounds from leaded petrol. lain why lead compounds are harmful.
		[1]
-	Sul	SubTopic: Air Q# 10/ iGCSE Chemistry/2015/s/Paper 31/Q1 fur, present in coal, is one major cause of acid rain. Sulfur burns to form sulfur dioxide which cts with rain water to form sulfuric acid.
	(i)	Describe how the high temperatures in vehicle engines are another cause of acid rain.
	(ii)	Give two harmful effects of acid rain.
		[2]

Topic Chem 11 SubTopic: Air Q# 11/ iGCSE Chemistry/2015/w/Paper 31/

Describe how to separate the following. In each example, give a description of the procedure used and explain why this method works. (b) Nitrogen from a mixture of nitrogen and oxygen. procedure [3] Topic Chem 11 SubTopic: Carbon cycle Q# 12/ iGCSE Chemistry/2009/s/Paper 31/ Q4 (b) Explain the role of chlorophyll in green plants. Topic Chem 11 SubTopic: Carbon cycle Q# 13/ iGCSE Chemistry/2010/w/Paper 31/ The diagram shows part of the carbon cycle. This includes some of the processes which determine the percentage of carbon dioxide in the atmosphere. carbon dioxide in the atmosphere combustion respiration photosynthesis Carbon dioxide is one greenhouse gas. Name another one.[1] Explain the term respiration and how this process increases the percentage of carbon dioxide in the atmosphere.

(ii	ii)	Explain why the combustion of waste crop material should not alter the percentage of carbon dioxide in the atmosphere.
		[2]
(iv	v)	In 1960 the percentage of carbon dioxide in the atmosphere was 0.032% and in 2008 it was 0.038%. Suggest an explanation for this increase.
		[2]
•		SubTopic: Carbon cycle Q# 14/ iGCSE Chemistry/2011/s/Paper 31/
2 Sel	eniu	ım and sulfur are in Group VI. They have similar properties.
(a)		e of the main uses of selenium is in photoelectric cells. These cells can change light o electrical energy.
	(i)	Name a process which can change light into chemical energy.
Topic Chen	n 11	SubTopic: Carbon cycle Q# 15/ iGCSE Chemistry/2011/w/Paper 31/
2 Two	imp	ortant greenhouse gases are methane and carbon dioxide.
		hane is twenty times more effective as a greenhouse gas than carbon dioxide. The hane in the atmosphere comes from both natural and industrial sources.
	(i)	Describe two natural sources of methane.
		[2]
(ii)	Although methane can persist in the atmosphere for up to 15 years, it is eventually removed by oxidation. What are the products of this oxidation?
		[2]
		v do the processes of respiration, combustion and photosynthesis determine the centage of carbon dioxide in the atmosphere?
		[4]

	Coal is a solid fossil fuel.					
	Name two other fossil fuels.					
						[2]
(b)	Two of the elements present in a	sample of	coal are ca	arbon and	sulfur.	
	A sample of coal was heated in to and hydrocarbons.	ne absence	e of air and	I the produ	cts include	d water, ammonia
	Name three other elements pres	ent in this :	sample of o	coal.		
						[2]
(d)	In 2010, a large coal-burning powood.					
	Explain why the combustion of w from this power station on the lev					t of the emissions
						[3]
	m 11 SubTopic: Nitrogen and fertilise		GCSE Chemis	stry/2010/w	/Paper 31/	Q4
IA I	mmonia is made by the Haber I	Process.				
N ₂	$_{2}(g) + 3H_{2}(g) \rightleftharpoons 2NH_{3}(g)$ for	ward read	tion is exc	othermic		
Tł	ne percentage of ammonia in th	ne equilibr	ium mixtu	re varies	with condi	tions
			Tarri Triizco			
	pressure/atmospheres	100	200	300	400	
	% ammonia at 300 °C	45	65	72	78	
	% ammonia at 500 °C	9	18	25	31	
						a a t a livrat
Tł	ne conditions actually used are	200 atmo	spheres,	450°C an	d an iron (catalyst.
Tł	ne conditions actually used are The original catalyst was pla					-

ii) Explain why the highest pressure gives the highest percentage of ammonia in the equilibrium mixture.

(iii)	What happens to the unreacted nitrogen and hydrogen?	
		[1]
(iv)	State one advantage and one disadvantage of using a lower temperature.	
	advantage	
	diaadvantaga	
	disadvantage	
(b) An	em 11 SubTopic: Nitrogen and fertilisers Q# 18/ iGCSE Chemistry/2013/s/Paper 31/ Q6 mmonia is manufactured by the Haber Process. The economics of this process recat as much ammonia as possible is made as quickly as possible. Explain how this can be done using the following information.	quire
Th	ne conditions for the following reversible reaction are:	
:	450 °C 200 atmospheres pressure iron catalyst	
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ the reaction is exothermic	
		. [5]

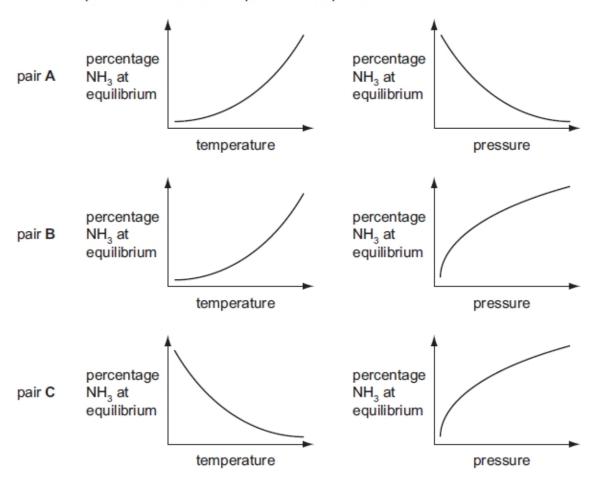
Topic Chem 11 SubTopic: Nitrogen and fertilisers Q# 19/ iGCSE Chemistry/2013/w/Paper 31/

3 Ammonia is manufactured by the Haber process.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The forward reaction is exothermic.

(a) Describe how the reactants are obtained.


(i) Nitrogei	Π
--------------------------------	---

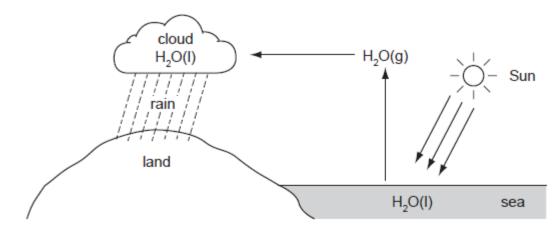
	[2

(ii) Hydrogen

- (b) The percentage of ammonia in the equilibrium mixture varies with temperature and pressure.
 - (i) Which pair of graphs, A, B or C, shows correctly how the percentage of ammonia at equilibrium varies with temperature and pressure?

The pair with both graphs correct is

(11)	Give a full explanation of why the pair of graphs you have chosen in (i) is correct.
	[6]
(iii)	Catalysts do not alter the position of equilibrium. Explain why a catalyst is used in this process.
	[2]
-	m 11 SubTopic: Rusting Q# 20/ iGCSE Chemistry/2009/w/Paper 3/ Q3 A major use of zinc is galvanizing; steel objects are coated with a thin layer of zinc.
	This protects the steel from rusting even when the layer of zinc is broken.
	thin layer steel exposed to
	of zinc oxygen and water
	steel
	Explain, by mentioning ions and electrons, why the exposed steel does not rust.
	[3


Topic Chem 11 SubTopic: Rusting Q# 21/ iGCSE Chemistry/2013/s/Paper 31/ Q6

(e)	 Hydrazine is a weak base and it removes dissolved oxygen from water. It is added to water in steel boilers to prevent rusting. 				
	(i)	One way it reduces the rate of rusting is by changing the pH of water. What effect would hydrazine have on the pH of water?			
			[1]		
	(ii)	Give a reason, other than pH, why hydrazine reduces the rate of rusting.			
Tonic	Cho	m 11 SubTopic: Rusting Q# 22/ iGCSE Chemistry/2014/w/Paper 31/ Q4	[1]		
		and steel rust. Iron is oxidised to hydrated iron(III) oxide, Fe ₂ O ₃ .2H ₂ O, which is rust.			
	(i)	Name the two substances which cause iron to rust.			
			[1]		
	(ii)	Explain why an aluminium article coated with aluminium oxide is protected from furth corrosion but a steel article coated with rust continues to corrode.			
(d)	The	ere are two electrochemical methods of rust prevention.			
	(i)	The first method is sacrificial protection.			
		Explain why the steel article does not rust.			
		connected steel pipe electrically to steel pipe			

Topic Chem 11 Subtopic: Water Q# 23/ iGCSE Chemistry/2012/s/Paper 31/

The diagram below shows part of the Water Cycle.

State the name of each of the following changes of state.

$$\mbox{H}_2\mbox{O(I)} \rightarrow \mbox{H}_2\mbox{O(g)}$$
 name
$$\mbox{H}_2\mbox{O(g)} \rightarrow \mbox{H}_2\mbox{O(I)}$$
 name ...

(ii)	Which one of the above changes of state is exothermic? Explain your choice.	
		[1]

it enters the water supply.	
	,

(b) The rain drains into rivers and then into reservoirs. Describe how water is treated before

......[2]

Topic Chem 11 Subtopic: Water Q# 24/ iGCSE Chemistry/2014/s/Paper 31/

(a) Water is needed for industry and in the home.

(1)	Rain water is collected in reservoirs. How is it treated before entering the water supply?
	[2

(ii) State two industrial uses of water.

(iii) State two uses of water in the home. [2] Mark Scheme iG Chem 11 EQ P5 15w to 01w Air and Water Q# 1/ iGCSE Chemistry/2009/w/Paper 3/ 1 (a) (i) argon or krypton or helium [1] Accept xenon and radon even though percentages are very small NOT hydrogen (ii) water and carbon dioxide [2] Q# 2/ iGCSE Chemistry/2009/w/Paper 3/ 4 (c) (ii) water carbon dioxide sulfur dioxide all three [2] any two [1] Accept correct formulae Q# 3/ iGCSE Chemistry/2009/w/Paper 3/ QiGCSE Chemistry/201 (b) (i) sulfur dioxide or lead compounds or CFCs or methane or particulates or unburnt hydrocarbons or ozone etc. [1] (ii) incomplete combustion of a fossil fuel or a named fuel or a fuel that contains carbon [1] (iii) at high temperature or inside engine [1] nitrogen and oxygen (from the air) react [1] (iv) it changes carbon monoxide to carbon dioxide oxides of nitrogen to nitrogen [1] OR symbol or word equation of the type: $2NO + 2CO \rightarrow CO_2 + N_2$ [2] OR a redox explanation - the oxides of nitrogen oxidise carbon monoxide to carbon dioxide, [1] they are reduced to nitrogen [1] OR 2NO \rightarrow N₂ + O₂ [1] $2CO + O_2 \rightarrow 2CO_2$ [1] Q# 4/ iGCSE Chemistry/2010/s/Paper 31/ Q2 (ii) carbon dioxide / calcium carbonate [1] not methane water [1] sodium chloride / brine / seawater [1] Q# 5/ iGCSE Chemistry/2010/s/Paper 31/ Q2 (iv) oxygen and nitrogen (in air) [1] not from fuel, negates mark 1 (react) at high temperatures / lightning / in engine [1] not combustion or exhaust, negates mark 2

(v) $2O_3 \rightarrow 3O_2$

not balanced = [1]

	Q# 6/ iGCSE Chemistry/2011/w/Paper 31/ QiGCSE Chemistry/201 (b) sulfur dioxide burn (fossil) fuel containing sulfur / volcanoes nitrogen dioxide reaction of nitrogen and oxygen high temperatures / in car engine not: exhaust								
Q#			Chemistry/2012/s/Paper 31/ combustion of <u>fossil fuels</u> ; (which contain) sulfur; sulfur dioxide formed; (reacts in air / with water to form) sulfurous / sulfuric OR	acid;		[1] [1] [1] [1]			
			nitrogen and oxygen in air; react at high temperatures / in engines; to form oxides of nitrogen or named oxide of nitrogen; (reacts in air / with water to form) nitrous / nitric acid;			[1] [1] [1] [1] [max 4]			
Q#	8/ iGC	CSE	Chemistry/2012/w/Paper 31/ Q3						
	(c)	(i)	carbon monoxide-incomplete combustion; carbon - containing fuel / fossil fuel / petrol;			[1] [1]			
			oxides of nitrogen - oxygen and nitrogen react; at high temperature / in engine; not : in exhaust			[1] [1]			
	(ii)	carbon monoxide to carbon dioxide; oxides of nitrogen to nitrogen; correct balanced equation;			[1] [1] [1]			
Q#	9/ iGC	CSE	Chemistry/2014/w/Paper 31/						
5	(a)		trogen and oxygen react high temperatures (in engine)			[1] [1]			
	(b)	М	1 carbon monoxide (converted to) carbon dioxide or 2C	0 +	$O_2 \rightarrow 2CO_2$	[1]			
			2 (by) oxides of nitrogen (which are reduced to) nitroger 2NO \rightarrow N ₂ + O ₂ or 2NO ₂ \rightarrow N ₂ + 2O ₂	1		[1]			
		М	3 hydrocarbons (burn) making water			[1]			
			4 products: any two from: arbon dioxide, water, nitrogen			[1]			
	(c)		ad compounds are toxic or brain damage or reduce IQ of ilure or anaemia	or nau	isea or kidney	[1]			
Q #	10/ iG	SCS	E Chemistry/2015/s/Paper 31/		+				
	1(c)(i)		M1 oxygen and nitrogen (from air) react;		A nitrogen combust for M ¹ R M1 if oxygen or nitroger the fuel				
			M2 oxides of nitrogen OR nitrogen oxide(s) are formed;		A named oxide of nitroger	e.g. nitrogen			

1(c)(i)	M1 oxygen and nitrogen (from air) react;		A nitrogen combust for M1 R M1 if oxygen or nitrogen originate from the fuel
	M2 oxides of nitrogen OR nitrogen oxide(s) are formed;		A named oxide of nitrogen e.g. nitrogen
			dioxide A correct formulae A NO.
	M3 nitrogen oxides formed react with water (to form acid);	3	Χ·IOχ

1(c)(ii)	Anv	two from:		R 'global warming/greenhouse effect'
.(0)(=)	'	owers pH or acidifies lakes/rivers or kills fish;		R 'increases pH of lakes so kills fish' for M1
		hanges composition of soils or reduces fertility of soil or reduces crop		A removes nutrients / leaches the soil
		s deforestation or kills crops/trees/plants/leaves;		
	M3 a	ttacks (limestone) buildings or statues;		A alternative words for 'attacks' e.g. damages/reacts with/corrode/erode for M3 and M4
	M4 a	ttacks metal (structures)/bridges;	3	I rusting but A 'enhances rusting' for M4 I toxicity to humans
2(b)	diffus nitrog becau or (turn i (fracti differe or burn a oxyge name	hemistry/2015/w/Paper 31/ ion (through a membrane); en diffuses faster; use it has the smaller M _i ; into) liquid; ional) distillation; ent boiling points; a named substance to make non-gaseous product; en reacts /nitrogen does not react; of product of combustion; hemistry/2009/s/Paper 31/		3
p p c	hotoci arbon lucose	ynthesis or chloroplasts hemical reaction or needs light dioxide + water form e or starch or oxygen NOT sugar IREE correct points ignore incorrect answers		[3
Q# 13/ i0	GCSE C	hemistry/2010/w/Paper 31/		
7	(i)	methane / water vapour / oxides of nitrogen / hy ozone not sulfur dioxide	droflu	procarbons / perfluorocarbons / [1]
	(ii)	living organisms / plants and animals / cells		[1]
		produce energy (from food / glucose / carbohydrate this forms carbon dioxide (could be in an equation)		[1] [1]
	(iii)	when growing the crop removed carbon dioxide fro / crop photosynthesised and used carbon dioxide	m atm	osphere [1]
		combustion returned the carbon dioxide		[1]
	(iv)	increased combustion of fossil fuels / named fossil fuel		[1] [1]
		or deforestation		[1]
		or deforestation less photosynthesis not greater population		[1] [1]
		less photosynthesis		
Q# 14/ io	GCSE C	less photosynthesis		[1]

Q# 15/ iGCSE Chemistry/2011/w/Paper 31/

2	(a)	(i)	(waste gases) from animals decaying vegetation / anaerobic decay accept: decomposition of organic material / natural gas	[1] [1]
		(ii)	carbon dioxide water	[1] [1]
	(b)	bot any pla (bu res car cor	otosynthesis removes carbon dioxide from the atmosphere th respiration and combustion produce carbon dioxide (*/ two of the following: Ints photosynthesis changes carbon dioxide into carbohydrates (ming) of fossil fuels / named fuel / petrol / alkanes (piration by living organisms to obtain energy from (bon—containing compounds (mment that the balance between these processes determines the percentage of exide)	[1] [1] [2] carbon

Q# 16/ iGCSE Chemistry/2015/s/Paper 31/

1(a)	Any two fossil fuels from: crude oil/ petroleum;		l ethane/oil/naphtha/coal/gas
	natural gas/methane; petrol/gasoline;		R coke/bitumen/lubricating oil/wood
	kerosene/paraffin; diesel (oil)/gas oil;		
	fuel oil; refinery gas /LPG;		
	propane; butane;	2	
1(b)	hydrogen, oxygen, nitrogen; All three for 2 marks two for 1 mark	2	A H, O, N I H ₂ , O ₂ , N ₂
1(d)	Any three from: M1 wood burns to produce (less) carbon dioxide; M2 trees (wood) take in carbon dioxide; M3 by photosynthesis;		
	M4 wood is carbon neutral fuel;	3	

Q# 17/ iGCSE Chemistry/2010/w/Paper 31/ Q4

(b)	(i)	expensive meta	al / iron cheaper / better catalyst	[1]
	(ii)	•	avours side with smaller volume / fewer moles d side / product / ammonia side	[1] [1]
	(iii)	recycled / sent accept used ag	over catalyst again gain	[1]
	(iv)	advantage disadvantage	high yield slow reaction rate etc	[1] [1]

Q# 18/ iGCSE Chemistry/2013/s/Paper 31/ Q6

- (b) any five from:
 - high pressure favours lower volume side / movement to right / ammonia side, or high pressure increases the yield
 - high pressure increases rate
 - low temperature favours exothermic reaction / increases yield / favours the forward reaction
 - low temperature gives low rate or vice versa
 - catalyst increases rate or lowers activation energy
 - 450 °C low enough to give an economic yield but with catalyst gives a fast enough rate note need whole concept to get this compromise temperature point [5]

Q# 19/ iGCSE Chemistry/2013/w/Paper 31/

- 3 (a) (i) fractional distillation [1] (liquid) air
 - (ii) cracking / heat in presence of catalyst [1] of alkane / petroleum [1] to give an alkene and hydrogen [1]

OR: electrolysis (1) named electrolyte (1) hydrogen at cathode (1)

OR: from methane (1) react water / steam (1) heat catalyst (1)

only ACCEPT: water with methane or electrolysis

- (b) (i) the pair with both graphs correct is C

 NOTE: mark (b)(ii) independent of (b)(i)

 [1]
 - (ii) high pressure favours side with lower volume / fewer moles
 this is RHS / product / ammonia
 %NH₃ / yield increases as pressure increases
 [1]
 - the forward reaction is exothermic [1] exothermic reactions favoured by low temperatures [1] %NH₃ / yield decreases as temperature increases [1]

ACCEPT: reverse arguments

(iii) increases reaction rate

ACCEPT: reduces activation energy

[1]

OR: decreases the amount of energy particles need to react OR: economic rate at lower temperature so higher yield

OR: economic rate at lower temperature so higher yield

Q# 20/ iGCSE Chemistry/2009/w/Paper 3/ Q3

- (b) zinc is more reactive [1]
 it loses electrons and forms ions in preference to iron [1]
 zinc corrodes not iron [1]
 NOT zinc rusts
 - OR zinc loses electrons and forms ions
 the electrons move on to the iron
 the iron cannot be oxidised or it cannot rust or it cannot lose electrons
 CREDIT correct Chemistry that includes the above ideas

Q# 21/ iGCSE Chemistry/2013/s/Paper 31/ Q6 (e) (i) pH increases [1] (ii) oxygen needed for rusting / removes oxygen / reacts with oxygen [1] Q# 22/ iGCSE Chemistry/2014/w/Paper 31/ Q4 (c) (i) air/oxygen and water (need both) [1] (ii) aluminium oxide layer is impervious or non-porous or passive or unreactive or will not allow water/air to pass through it (rust allows passage of water or air or it flakes off) [1] (d) (i) zinc more reactive (than iron/steel) [1] loses electrons [1] electrons move (from zinc) to iron [1] Zinc reacts (with air and water) or zinc corrodes or zinc is oxidised or zinc is anodic or zinc forms positive ions or zinc forms Zn²⁺ or iron and steel don't react with air/water or iron and steel are not oxidised or iron and steel do not form ions or iron and steel do not lose electrons or iron and steel are cathodic [1] Q# 23/ iGCSE Chemistry/2012/s/Paper 31/ (a) (i) evaporation / boiling / vaporisation / evaporate / vaporise; [1] condensation / liquefaction / condense / liquefy; [1] (ii) condensation accept: correct equation H₂O₍₀₎→H₂O₍₁₎ because energy / heat is given out / gas has more energy than liquid / need to supply energy to change liquid to gas so reverse must give out energy / bonds form; [1] (b) chlorination / chlorine to kill microbes; [1] filtration or filter; [1] accept: sedimentation or sand or gravel or grit Q# 24/ iGCSE Chemistry/2014/s/Paper 31/ (a) (i) filtration (1) chlorination (1) [2] (ii) Any two from: [2] manufacture of ethanol used in the manufacture of sulfuric acid or in the Contact process manufacture of hydrogen or ammonia or for the Haber process (iii) Any two from: [2]

cookina

drinking toilets

washing or laundry

watering plants (domestic) heating

iG Chem 12 13 EQ P3 15w to 01w 100marks

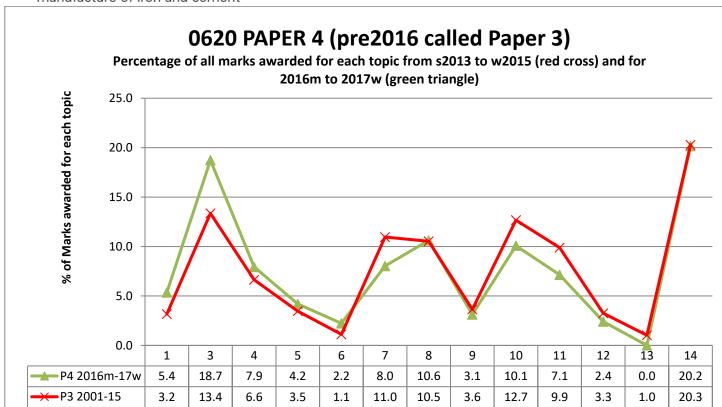
12 Sulfur

12.1 Sulfur

Core

- Name some sources of sulfur
- Name the use of sulfur in the manufacture of sulfuric acid
- State the uses of sulfur dioxide as a bleach in the manufacture of wood pulp for paper and as a food preservative (by killing bacteria)

Supplement


- Describe the manufacture of sulfuric acid by the Contact process, including essential conditions and reactions
- Describe the properties and uses of dilute and concentrated sulfuric acid

13 Carbonates

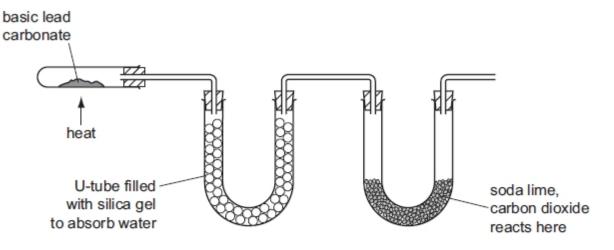
13.1 Carbonates

Core

- Describe the manufacture of lime (calcium oxide) from calcium carbonate (limestone) in terms of thermal decomposition
- Name some uses of lime and slaked lime such as in treating acidic soil and neutralising acidic industrial waste products, e.g. flue gas desulfurisation
- Name the uses of calcium carbonate in the manufacture of iron and cement

Topic Number

Topic Chem 12 Q# 1/ iGCSE Chemistry/2014/w/Paper 31/



a) St	ate two other uses of sulfur dioxide.	
		[2]
(b) Or	ne source of sulfur dioxide is burning sulfur in air.	
	scribe how sulfur dioxide can be made from the ore zinc sulfide.	
		[2]
(c) Th	e Contact process changes sulfur dioxide into sulfur trioxide.	
28	$O_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	
the	e forward reaction is exothermic	
ter	nperature 400 to 450 °C	
	v pressure 1 to 10 atmospheres	
ca	talyst vanadium(V) oxide	
(i)	What is the formula of vanadium(V) oxide?	
		[1]
(ii)	Vanadium(V) oxide is an efficient catalyst at any temperature in the range 400 to 450 Scientists are looking for an alternative catalyst which is efficient at 300 °C. What would be the advantage of using a lower temperature?	°C.
		[2]
(iii)	The process does not use a high pressure because of the extra expense. Suggest two advantages of using a high pressure? Explain your suggestions.	
		[4]

www.SmashingScience.org

Topic Chem 12 Q# 2/ iGCSE Chemistry/2013/w/Paper 31/ Q6

(b) Basic lead(II) carbonate is heated in the apparatus shown below. Water and carbon dioxide are produced.

(i) Silica gel absorbs water. Silica gel often contains anhydrous cobalt(II) chloride. When this absorbs water it changes from blue to pink. Suggest a reason.

.....[1]

(ii) Soda lime is a mixture of sodium hydroxide and calcium oxide. Why do these two substances react with carbon dioxide?

......[2]

(iii) Name two substances formed when soda lime reacts with carbon dioxide.

.....[2]

Topic Chem 12 Q# 3/ iGCSE Chemistry/2011/s/Paper 31/ Q4

(b) Sulfur dioxide is used to make sulfur trioxide in the Contact Process.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

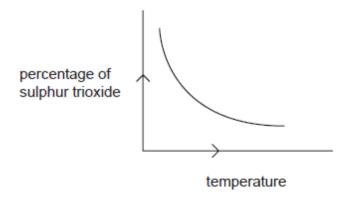
The forward reaction is exothermic. The conditions used are:

temperature: 450°C

2 atmospheres pressure: catalyst: vanadium(V) oxide

Explain, mentioning both position of equilibrium and rate, why these conditions give the most economic yield.

		[A]
Горіс	Chem 1	[4] 2 Q# 4/ iGCSE Chemistry/2009/w/Paper 3/
6	(a) S	Ilfuric acid is made by the Contact process.
		$2SO_2 + O_2 \rightleftharpoons 2SO_3$
	Tł	is is carried out in the presence of a catalyst at 450 °C and 2 atmospheres pressure.
	(i)	How is the sulfur dioxide made?
		[1]
	(**)	
	(ii)	Give another use of sulfur dioxide.
		[1]
	(iii)	Name the catalyst used.
		[1]
	(iv)	If the temperature is decreased to 300 °C, the yield of sulfur trioxide increases. Explain why this lower temperature is not used.
		[1]
	(v)	Sulfur trioxide is dissolved in concentrated sulfuric acid. This is added to water to make more sulfuric acid. Why is sulfur trioxide not added directly to water?
Горіс	Chem 1	[1] 2 Q# 5/ iGCSE Chemistry/2008/s/Paper 31/
1		ach of the following select an element from Period 4, potassium to krypton, that es the description.
	(g) O	ne of its oxides is the catalyst in the Contact Process.



4 2	ınc	is ex	xtracted from zinc blende, ZnS.						
(8		Zinc blende is heated in air to give zinc oxide and sulphur dioxide. Most of the sulph dioxide is used to make sulphur trioxide. This is used to manufacture sulphuric ac Some of the acid is used in the plant, but most of it is used to make fertilisers.							
		(i)	Give another use of sulphur dioxide.						
				[1]					
	((ii)	Describe how sulphur dioxide is converted into sulphur trioxide.						
				[3]					
	(iii)	Name a fertiliser made from sulphuric acid.						
				[1]					
Горіс (Cher	n 12 (Q# 7/ iGCSE Chemistry/2006/s/Paper 3/ Q5 (b)						
(iii)			ain, mentioning both rate and percentage yield, why the temperature use contact process is 450°C.	d in					
				[2]					
(iv)			ribe how the sulphur trioxide is changed into concentrated sulphuric acid.						
()			······································						
				[2]					
Горіс (Cher	n 12 (Q# 8/ iGCSE Chemistry/2006/s/Paper 3/						
5	Sul	phur	ic acid is made by the Contact process in the following sequence of reactions.						
			$sulphur \rightarrow sulphur \ dioxide \rightarrow sulphur \ trioxide \rightarrow sulphuric \ acid$						
	(a)	(i)	How is sulphur dioxide made from sulphur?						
				[1]					
		(ii)	Sulphur dioxide has other uses. Why is it used in the manufacture of paper?						
				[1]					
		(iii)	How does it preserve food?						

(b) The equation for a stage of the Contact process is

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

The percentage of sulphur trioxide in the equilibrium mixture varies with temperature.

(i) How does the percentage of sulphur trioxide in the equilibrium mixture vary as the temperature increases? Circle the correct answer.

increases stays the same decreases

[1]

(ii) Is the forward reaction in the equilibrium 2SO₂ + O₂ ⇒ 2SO₃ exothermic or endothermic? Give a reason for your choice.

[2]

Topic Chem 12 Q# 9/ iGCSE Chemistry/2005/s/Paper 3/Q4

(c) Sulphuric acid is manufactured by the Contact Process. Sulphur dioxide is oxidised to sulphur trioxide by oxygen.

(i) Name the catalyst used in this reaction.

	[1]	
--	----	---	--

(ii) What temperature is used for this reaction?

(iii) Describe how sulphur trioxide is changed into sulphuric acid.

[2]

- 4 The Carlsbad caverns in New Mexico are very large underground caves. Although the walls of these caves are coated with gypsum (hydrated calcium sulphate), the caves have been formed in limestone.
 - (a) It is believed that the caves were formed by sulphuric acid reacting with the limestone.
 - (i) Complete the word equation.

calcium	+	sulphuric	\rightarrow	calcium	+	 +		
carbonate		acid		sulphate			 [1]	1

(ii) Describe how you could test the water entering the cave to show that it contained sulphate ions.

test

result [2]

(iii) How could you show that the water entering the cave has a high concentration of hydrogen ions?

[1]

- (b) Hydrogen sulphide gas which was escaping from nearby petroleum deposits was being oxidised to sulphuric acid.
 - (i) Complete the equation for this reaction forming sulphuric acid.

$$H_2S + O_2 \longrightarrow$$
 [2]

(ii) Explain why all the hydrogen sulphide should be removed from the petroleum before it is used as a fuel.

[4

.....[1]

Topic Chem 12 **Q# 11/** iGCSE Chemistry/2004/s/Paper 3/

- 2 Sulphur is used to make sulphuric acid. In the UK, the annual production of the acid is about 2.5 million tonnes.
 - (a) The reactions in the manufacture of sulphuric acid by the Contact Process are shown below.

			Sulphur trioxide		Oleum	
			SO ₃	reaction 3	$H_2S_2O_7$	
			Oleum + water		Sulphuric acid	
			$H_2S_2O_7$	reaction 4	H ₂ SO ₄	
		(i)	Give a large scale source of the	element sulph	nur.	
					[1]
		(ii)	State another use of sulphur dio	xide.		
					[[1]
	(iii)	How is sulphur changed into sul	phur dioxide?		
					[[1]
	(iv)	Name the catalyst used in reacti	on 2 .		
					-	[1]
		(v)	Reaction 2 is exothermic. Why is to increase the rate of this reverse		ither than a higher temperature, use	ed
					[2]
	(vi)	Write a word equation for reaction	on 3.		
						1]
	(\	/ii)	Write a symbol equation for read	ction 4.		
					[1]
•			Q# 12/ iGCSE Chemistry/2003/w/Pape dioxide, SO ₂ , and sulphur trioxid		ne two oxides of sulphur	
		Sul	-	nd has bleach	ing properties. Give a use of sulph	hur
		(i)	ability to kill bacteria			.[1]
		(ii)	bleaching properties			.[1]
(b)	Sul	phur trioxide can be made from	sulphur dioxid	e.	
		(i)	Why is this reaction important i	ndustrially?		
						.[1]

	(ii)	Complete the word equation.
		sulphur dioxide + $ ightarrow$ sulphur trioxide [1]
	(iii)	What are the conditions for this reaction?
T 1 0	Sh 42	[2]
•		Q# 13/ iGCSE Chemistry/2002/w/Paper 3/
1 (4	a) Suip	ohuric acid is made by the Contact Process.
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ forward reaction is exothermic
	(i)	What are the reaction conditions for the Contact Process?
		[3]
	(ii)	Would the yield of sulphur trioxide increase, decrease or stay the same when the temperature is increased? Explain your answer.
	(iii)	Describe how sulphur trioxide is changed into concentrated sulphuric acid.
		[2]
Topic ((a) In	Q# 14/ iGCSE Chemistry/2001/w/Paper 3/ the USA, sulphur is obtained from underground deposits. It burns to form sulphu oxide. This is used in paper making, to preserve food and in the manufacture of liphuric acid.
	(i)	Why is sulphur dioxide needed in paper making?
		[1
	(ii)	How does sulphur dioxide preserve food?
		[a

Topic Chem 13 Q# 15/ iGCSE Chemistry/2015/w/Paper 31/

Sulfuric acid is made by the Contact process.

(a) Sulfur is burned by spraying droplets of molten sulfur into air. Suggest and explain an advantage of using this method. (b) The following equation represents the equilibrium in the Contact process. $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ Oxygen is supplied from the air. The composition of the reaction mixture is 1 volume of sulfur dioxide to 1 volume of oxygen. What volume of air contains 1 dm3 of oxygen?dm³ [1] (c) Sulfur dioxide is more expensive than air. What is the advantage of using an excess of air?[2] (d) The forward reaction is exothermic. The reaction is usually carried out at a temperature between 400 and 450 °C. What is the effect on the position of equilibrium of using a temperature above 450 °C? Explain your answer.[2] (ii) What is the effect on the rate of using a temperature below 400 °C? Explain your answer.

(e)	A lo	w pressure, 2 atmospheres, is used. At equilibrium, about 98% SO₃ is present.	
	(i)	What is the effect on the position of equilibrium of using a higher pressure?	
			[1]
	(ii)	Explain why a higher pressure is not used.	
			[1]
			[1]
(f)	Nar	ne the catalyst used in the Contact process.	
			[1]
(g)	Des	cribe how concentrated sulfuric acid is made from sulfur trioxide.	
nic	Chan	n 13 Q# 16/ iGCSE Chemistry/2012/s/Paper 31/ QiGCSE Chemistry/201(c)	[2]
		arbonate is a better choice.	
			[2]
•		n 13 Q# 17/ iGCSE Chemistry/2012/s/Paper 31/	
	Rea seri	ctive metals tend to have unreactive compounds. The following is part of these.	ne reactivity
		sodium most reactive	
		sodium most reactive calcium	
		zinc	
		copper silver least reactive	
	(a)	Sodium hydroxide and sodium carbonate do not decompose when heated.	
	(~)	The corresponding calcium compounds do decompose when heated.	
		Complete the following equations.	
		calcium carbonate → +	
		Ca(OH) ₂ → +	ra

Mark Scheme iG Chem 12 13 EQ P3 15w to 01w 100marks

Q# 1/ iGCSE Chemistry/2014/w/Paper 31/

3 (a) Any two from:

bleach/making wood pulp/making paper food/fruit juice/wine preservative fumigant/sterilising/insecticide

[2]

(b) heating/roasting/burning (zinc sulfides) in air/oxygen COND on M1

[1] [1]

(c) (i) V₂O₅

[1]

(ii) position of equilibrium shifts right/yield increases to save energy

[1]

(iii) faster reaction/rate

[1]

more collisions per second/higher collision frequency

[1]

fewer moles/molecules (of gas) on right

[1]

(so) position of equilibrium shifts right/yield increases

- [1]
- (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid)
- Q# 2/ iGCSE Chemistry/2013/w/Paper 31/ Q6

	(b) (i)	anhydrous cobalt chloride becomes hydrated ACCEPT: hydrous	[1]
	(ii)	carbon dioxide is acidic sodium hydroxide and calcium oxide are bases / alkalis	[1] [1]
	(iii)	Any two of: water, calcium carbonate and sodium carbonate ACCEPT: sodium bicarbonate	[2]
Q# 3/	iGCSE (Chemistry/2011/s/Paper 31/ Q4	
(t	then	high yield need low temperature rate would be too slow or uneconomic cussion of optimum temperature could score mark 1 and 2	[1] [1]
	does	ence of catalyst would increase rate (at same temperature) s not alter the yield (at that temperature) enomic rate at lower temperature, therefore higher yield	[1] [1]
	_	er pressure which would increase yield / rate high enough / high pressure expensive	[1] [1] max [4]
		ept reverse arguments increase yield ≡ position of equilibrium to right	
Q# 4/ 6		chemistry/2009/w/Paper 3/ bum sulfur in air or oxygen or heat a metal sulfide in air	[1]
	(ii)	bleach for wood pulp/cloth/straw or preserve food or sterilising or making wine or fumigant or refrigerant Accept making paper	[1]
	(iii)	vanadium(V) oxide accept vanadium oxide or V ₂ O ₅ or vanadium pentoxide oxidation state not essential but if given it has to be (V)	[1]
	(iv)	rate too slow or rate not economic	[1]
	(v)	reaction too violent or forms a mist	[1]
Q# 5/	iGCSE (Chemistry/2008/s/Paper 31/ QiGCSE Chemistry/201	
	(g) var	nadium	[1]
	ACCEF	PT name or symbol	
Q# 6/		Chemistry/2007/w/Paper 3/	
4	(a) (i)	bleach for wood pulp or preserving food or sterilising or in wine making or as a refrigerant or in metallurgy or (liquid) sulphur dioxide is used in the petroleum industry	
		or kill microbes(etc) or insecticide	[1]
	(ii)	(react with) oxygen or air	[1]
		NOT burnt/burn in air/oxygen 450°C	[1]
		vanadium oxide catalyst (if oxidation state given has to be correct) or platinum If four conditions are given which include high pressure then MAX [2] High pressure is incorrect MAX 10 atm.	[1]
	(iii)	ammonium sulphate or superphosphate or potassium sulphate or magnesium sulphate	[1]
Q# 7/	iGCSE (Chemistry/2006/s/Paper 3/Q5 (b)	THE

www.SmashingScience.org

Patrick Brannac

Page **236** of **294**

(iii)	High Any	w enough for good yield gh enough for (economic) rate [1] y similar explanation will be awarded the mark OT just that it is the optimum temperature								
(iv)	bubb add	wate	[1] [1]							
Q# 8/			sequential nemistry/2006/s/Paper 3/							
5			Burn sulphur in air (or oxygen)	[1]						
	(-)		as a <u>bleach</u>	[1]						
		(iii)	kill bacteria/micro-organisms NOT prevents food going bad or rotten or decaying	[1]						
	(b)	(i)	decrease	[1]						
		(ii)	exothermic	[1]						
			COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature so it is exothermic (rather than endothermic)	[1]						
		(iii)	Low enough for good yield High enough for (economic) rate Any similar explanation will be awarded the mark NOT just that it is the optimum temperature	[1] [1]						
Q# 9/	iGC	SE Ch	nemistry/2005/s/Paper 3/							
(c)	(i)		adium oxide ${f or}$ vanadium(V) oxide ${f or}$ vanadium pentoxide or V_2O_5 ist be correct oxidation state if one given	[1]						
	(ii)	400	to 500° C	[1]						
	(iii)		to (concentrated) sulphuric acid NOT dilute ND (upon sulphuric acid) above then add water	[1] [1]						
Q# 10	/ iGC	SE Ch	nemistry/2005/s/Paper 3/							
4	(a)	(i)	correct word equation (carbon dioxide and water) Accept correct symbol equation	[1						
		(ii)	Must have a correct reagent otherwise wc = 0 add (acidified) barium chloride(aq) or nitrate or add barium ions COND white precipitate NOT lead(II) compounds	[1 [1						
		(iii)	low pH or universal indicator turns red(aq) pH 3 or less	[1						
	(b)	(i)	$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]	[2						

		(dioxide	or forms sulphuric acid s a pollutant	is acid	ı ranı	101		1]
		(2e per l THREE TWO fr	S Be around sulphur atom hydrogen atom correct hom above [1] ructure = [0]				[[2]
Q#	11/	iGCS	E Ch	emistry,	/2004/s/Paper 3/					
2.		(a)		(i)	USA or Texas or Poland or Mexico or Japan or Ethi Australia or Sicily accept other sources of sulphur eg petroleum or natural gas or metal sulphides or volcanoes NOT coal, NOT underground	opia		[1]		
				(ii)	Preserving food or bleaching or sterilising or disinfecting or making paper or bleaching wood pulp or wine or jam or fumigation or making paper NOT making wood pulp			[1]		
				(iii)	burnt/roast in oxygen or air			[1]		
				(iv)	vanadium(V) oxide or vanadium oxide or platinum ignore oxidation state of vanadium			[1]		
				(v)	Increase temperature (increases rate) but reduces y	ield		[1]		
					catalyst only increases rate or a catalyst does not influence position of equilibrium NOT a definition of a catalyst			[1]		
				(vi)	sulphur trioxide + sulphuric acid = oleum correct symbol equation acceptable			[1]		
				(vii)	$H_2S_2O_7 + H_2O = 2H_2SO_4$			[1]		
Q#	12/	iGCS	E Ch	emistry,	/2003/w/Paper 3/					
. ,	5	(a)		-	rve food or sterilising		[1]			
			(ii)) maki	ng paper		[1]			
	(b)			aking su tygen	alphuric acid or Contact Process	[1] [1]				
		(iii)	40	00 to 500						
			-		ess than 10 atm	101				
Q#	13/	iGCS		ny TWO nemistry,	/2002/w/Paper 3/	[2]				
	1			vanadi and acc temper pressur	um(V) oxide as catalyst - ignore oxidation state cept no oxidation state ature 300 to 600 °C re up to 10 atmos, accept atmospheric pressure e ratio of gases either 2:1 or slight excess of oxygen	3]				
			(ii)	forwar	back reaction is endothermic or same argument ba	l] sed on l]	1			
			(iii		ve in (conc) sulphuric acid NOT dilute vater or dilute	[1] [1]				

5 (a) (i) bleach

[1]

(ii) kills bacteria or germs or micro organisms

[1]

Q# 15/ iGCSE Chemistry/2015/w/Paper 31/

Question	Answer	Marks
3(a)	fast(er) reaction; large(r) surface area;	1
3(b)	4.76 (dm³);	1
3(c)	moves equilibrium to right; increases yield (of sulfur trioxide)/uses up more sulfur dioxide;	1
3(d)(i)	moves equilibrium to left; (forward reaction) exothermic;	1
3(d)(ii)	decrease rate; molecules have less energy/move slower; fewer collisions (per second)/fewer particles have the activation energy/fewer collisions have the activation energy;	1 1 1
3(e)(i)	moves to right;	1
3(e)(ii)	high yield at 2 atm;	1
3(f)	vanadium(V) oxide/vanadium pentoxide;	1
3(g)	M1 dissolve/react sulfur trioxide in (concentrated) sulfuric acid; add water to product of M1;	1

Q# 16/ iGCSE Chemistry/2012/s/Paper 31/ QiGCSE Chemistry/201(c)

(ii)	calcium oxide is soluble in water / reacts with water to form calcium hydroxide; pH above 7 / the water becomes alkaline;	[1] [1]
	OR calcium carbonate insoluble in water; pH cannot be above 7 / water is neutral / does not make water alkaline;	[1] [1] [max 2]

Q# 17/ iGCSE Chemistry/2012/s/Paper 31/

5	(a)	calcium carbonate → calcium oxide + carbon dioxide accept: correct symbol equation	[1]
		$Ca(OH)_2 \rightarrow CaO + H_2O$	[1]

Q# 18/ iGCSE Chemistry/2006/w/Paper 3/Q3

(c)	(i)	Any reasonable explanation Plants prefer soil pH about 7 Plants do not grow (well) in acidic soils/plants grow better	
		To increase crop yields Any ONE Do NOT accept in acidic soils plants die	[1]
	(ii)	With calcium carbonate, pH cannot go above 7 It is not washed away by the rain/remains longer in the soil	[1]
		It is not absorbed by the plant	[1]
		OR With calcium oxide, pH can go above 7 It is washed away by the rain	[1] [1]
	(iii)	Any correct use - making steel/iron, making cement, making glass, disposing of acid wastes, removing sulphur dioxide from flue gases, (stone in) building, indigestion tablets, toothpaste, cosmetics etc	[1]

Q# 19/ iGCSE Chemistry/2006/w/Paper 3/

3 (a) limestone or marble or chalk or coral or calcite or aragonite

[1]

iG Chem 12 13 EQ P3 15w to 01w 100marks

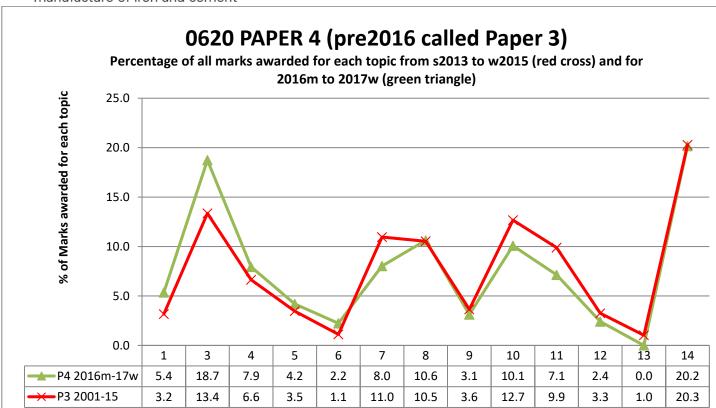
12 Sulfur

12.1 Sulfur

Core

- Name some sources of sulfur
- Name the use of sulfur in the manufacture of sulfuric acid
- State the uses of sulfur dioxide as a bleach in the manufacture of wood pulp for paper and as a food preservative (by killing bacteria)

Supplement


- Describe the manufacture of sulfuric acid by the Contact process, including essential conditions and reactions
- Describe the properties and uses of dilute and concentrated sulfuric acid

13 Carbonates

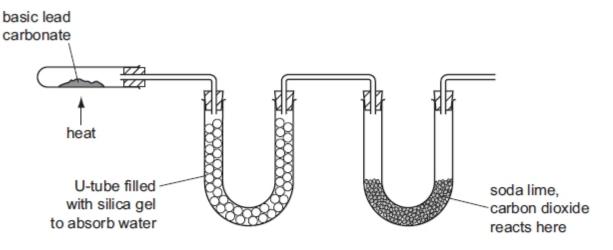
13.1 Carbonates

Core

- Describe the manufacture of lime (calcium oxide) from calcium carbonate (limestone) in terms of thermal decomposition
- Name some uses of lime and slaked lime such as in treating acidic soil and neutralising acidic industrial waste products, e.g. flue gas desulfurisation
- Name the uses of calcium carbonate in the manufacture of iron and cement

Topic Number

Topic Chem 12 Q# 1/ iGCSE Chemistry/2014/w/Paper 31/



(4)	ate two other uses of sulfur dioxide.	
		[2]
	ne source of sulfur dioxide is burning sulfur in air. escribe how sulfur dioxide can be made from the ore zinc sulfide.	
		[2]
(c) Th	ne Contact process changes sulfur dioxide into sulfur trioxide.	
25	$SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	
the	e forward reaction is exothermic	
tei	mperature 400 to 450 °C	
lov	w pressure 1 to 10 atmospheres	
ca	talyst vanadium(V) oxide	
(i)	What is the formula of vanadium(V) oxide?	
		[1]
(ii)	Vanadium(V) oxide is an efficient catalyst at any temperature in the range 400 to 450 Scientists are looking for an alternative catalyst which is efficient at 300 °C. What would be the advantage of using a lower temperature?)°C.
(ii)	Scientists are looking for an alternative catalyst which is efficient at 300 °C.)°C.
(ii) (iii)	Scientists are looking for an alternative catalyst which is efficient at 300 °C. What would be the advantage of using a lower temperature?	
	Scientists are looking for an alternative catalyst which is efficient at 300 °C. What would be the advantage of using a lower temperature? The process does not use a high pressure because of the extra expense. Suggest two advantages of using a high pressure?	
	Scientists are looking for an alternative catalyst which is efficient at 300 °C. What would be the advantage of using a lower temperature? The process does not use a high pressure because of the extra expense. Suggest two advantages of using a high pressure?	
	Scientists are looking for an alternative catalyst which is efficient at 300 °C. What would be the advantage of using a lower temperature? The process does not use a high pressure because of the extra expense. Suggest two advantages of using a high pressure?	

www.SmashingScience.org

Topic Chem 12 Q# 2/ iGCSE Chemistry/2013/w/Paper 31/ Q6

(b) Basic lead(II) carbonate is heated in the apparatus shown below. Water and carbon dioxide are produced.

(i) Silica gel absorbs water. Silica gel often contains anhydrous cobalt(II) chloride. When this absorbs water it changes from blue to pink. Suggest a reason.

.....[1]

(ii) Soda lime is a mixture of sodium hydroxide and calcium oxide. Why do these two substances react with carbon dioxide?

.....[2]

(iii) Name two substances formed when soda lime reacts with carbon dioxide.

.....[2]

Topic Chem 12 Q# 3/ iGCSE Chemistry/2011/s/Paper 31/ Q4

(b) Sulfur dioxide is used to make sulfur trioxide in the Contact Process.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

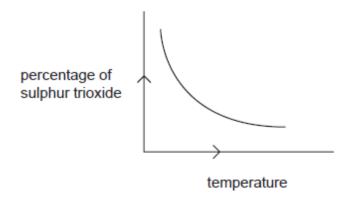
The forward reaction is exothermic. The conditions used are:

temperature: 450°C

pressure: 2 atmospheres catalyst: vanadium(V) oxide

Explain, mentioning both position of equilibrium and rate, why these conditions give the most economic yield.

		ran
Горіс	Chem 1	[4] 2 Q# 4/ iGCSE Chemistry/2009/w/Paper 3/
6	(a) S	Ilfuric acid is made by the Contact process.
		$2SO_2 + O_2 \rightleftharpoons 2SO_3$
	Th	is is carried out in the presence of a catalyst at 450 °C and 2 atmospheres pressure.
	(i)	How is the sulfur dioxide made?
		[1]
	(ii)	Give another use of sulfur dioxide.
		[1]
	(iii)	Name the catalyst used.
		[1]
	(iv)	If the temperature is decreased to 300 °C, the yield of sulfur trioxide increases. Explain why this lower temperature is not used.
		[1]
	(v)	Sulfur trioxide is dissolved in concentrated sulfuric acid. This is added to water to make more sulfuric acid. Why is sulfur trioxide not added directly to water?
Горіс	Chem 1	[1] 2 Q# 5/ iGCSE Chemistry/2008/s/Paper 31/
1		ach of the following select an element from Period 4, potassium to krypton, that es the description.
	(g) O	ne of its oxides is the catalyst in the Contact Process.



Zinc is extracted from zinc blende, ZnS. (a) Zinc blende is heated in air to give zinc oxide and sulphur dioxide. Most of the sulphur dioxide is used to make sulphur trioxide. This is used to manufacture sulphuric acid. Some of the acid is used in the plant, but most of it is used to make fertilisers. Give another use of sulphur dioxide. ______[1] (ii) Describe how sulphur dioxide is converted into sulphur trioxide. [3] (iii) Name a fertiliser made from sulphuric acid. [1] Topic Chem 12 Q# 7/ iGCSE Chemistry/2006/s/Paper 3/ Q5 (b) Explain, mentioning both rate and percentage yield, why the temperature used in the Contact process is 450°C. (iv) Describe how the sulphur trioxide is changed into concentrated sulphuric acid. [2] Topic Chem 12 Q# 8/ iGCSE Chemistry/2006/s/Paper 3/ Sulphuric acid is made by the Contact process in the following sequence of reactions. sulphur → sulphur dioxide → sulphur trioxide → sulphuric acid (a) (i) How is sulphur dioxide made from sulphur? [1] (ii) Sulphur dioxide has other uses. Why is it used in the manufacture of paper? [1] (iii) How does it preserve food?

(b) The equation for a stage of the Contact process is

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

The percentage of sulphur trioxide in the equilibrium mixture varies with temperature.

(i) How does the percentage of sulphur trioxide in the equilibrium mixture vary as the temperature increases? Circle the correct answer.

increases stays the same decreases [1]

(ii) Is the forward reaction in the equilibrium 2SO₂ + O₂ ⇒ 2SO₃ exothermic or endothermic? Give a reason for your choice.

[2]

Topic Chem 12 Q# 9/ iGCSE Chemistry/2005/s/Paper 3/Q4

(c) Sulphuric acid is manufactured by the Contact Process. Sulphur dioxide is oxidised to sulphur trioxide by oxygen.

(i) Name the catalyst used in this reaction.

	[1	1]
--	----	---	---

(ii) What temperature is used for this reaction?

(iii) Describe how sulphur trioxide is changed into sulphuric acid.

••••
[2]

- 4 The Carlsbad caverns in New Mexico are very large underground caves. Although the walls of these caves are coated with gypsum (hydrated calcium sulphate), the caves have been formed in limestone.
 - (a) It is believed that the caves were formed by sulphuric acid reacting with the limestone.
 - (i) Complete the word equation.

calcium	+	sulphuric	\rightarrow	calcium	+	 +		
carbonate		acid		sulphate			 [1]	

(ii) Describe how you could test the water entering the cave to show that it contained sulphate ions.

test

result [2]

(iii) How could you show that the water entering the cave has a high concentration of hydrogen ions?

______[1]

- (b) Hydrogen sulphide gas which was escaping from nearby petroleum deposits was being oxidised to sulphuric acid.
 - (i) Complete the equation for this reaction forming sulphuric acid.

$$H_2S + O_2 \longrightarrow$$
 [2]

(ii) Explain why all the hydrogen sulphide should be removed from the petroleum before it is used as a fuel.

[1]

Topic Chem 12 **Q# 11/** iGCSE Chemistry/2004/s/Paper 3/

- 2 Sulphur is used to make sulphuric acid. In the UK, the annual production of the acid is about 2.5 million tonnes.
 - (a) The reactions in the manufacture of sulphuric acid by the Contact Process are shown below.

			Sulphur trioxide		Oleum	
			SO ₃	reaction 3	$H_2S_2O_7$	
			Oleum + water	,	Sulphuric acid	
$H_2S_2O_7$			$H_2S_2O_7$	reaction 4	H_2SO_4	
		(i)	Give a large scale source of the	element sulph	nur.	
						[1]
	(ii)	State another use of sulphur dio	xide.		
						[1]
	(i	ii)	How is sulphur changed into sul	phur dioxide?		
						[1]
	(i	v)	Name the catalyst used in reacti	on 2 .		
						[1]
	(Reaction 2 is exothermic. Why is to increase the rate of this reverse		ther than a higher temperature, use	ed
						[2]
	(\	/i)	Write a word equation for reaction	on 3.		
						[1]
	(v	ii)	Write a symbol equation for read	ction 4.		
						[1]
•			Q# 12/ iGCSE Chemistry/2003/w/Pape dioxide, SO ₂ , and sulphur trioxid		e two oxides of sulphur	
	a)	Sul	-	nd has bleach	ing properties. Give a use of sulp	hur
		(i)	•			.[1].
		(ii)	bleaching properties			.[1]
(I	b)	Sul	phur trioxide can be made from	sulphur dioxid	э.	
		(i)	Why is this reaction important i	ndustrially?		
						.[1]

	(ii)	Complete the word equation.
		sulphur dioxide + $ ightarrow$ sulphur trioxide [1]
	(iii)	What are the conditions for this reaction?
T 1 0	Sh 42	[2]
•		Q# 13/ iGCSE Chemistry/2002/w/Paper 3/
1 (4	a) Suip	ohuric acid is made by the Contact Process.
		$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ forward reaction is exothermic
	(i)	What are the reaction conditions for the Contact Process?
		[3]
	(ii)	Would the yield of sulphur trioxide increase, decrease or stay the same when the temperature is increased? Explain your answer.
	(iii)	Describe how sulphur trioxide is changed into concentrated sulphuric acid.
		[2]
Topic ((a) In	Q# 14/ iGCSE Chemistry/2001/w/Paper 3/ the USA, sulphur is obtained from underground deposits. It burns to form sulphu oxide. This is used in paper making, to preserve food and in the manufacture of liphuric acid.
	(i)	Why is sulphur dioxide needed in paper making?
		[1
	(ii)	How does sulphur dioxide preserve food?
		[a

Topic Chem 13 Q# 15/ iGCSE Chemistry/2015/w/Paper 31/

Sulfuric acid is made by the Contact process.

(a) Sulfur is burned by spraying droplets of molten sulfur into air. Suggest and explain an advantage of using this method. (b) The following equation represents the equilibrium in the Contact process. $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ Oxygen is supplied from the air. The composition of the reaction mixture is 1 volume of sulfur dioxide to 1 volume of oxygen. What volume of air contains 1 dm3 of oxygen?dm³ [1] (c) Sulfur dioxide is more expensive than air. What is the advantage of using an excess of air?[2] (d) The forward reaction is exothermic. The reaction is usually carried out at a temperature between 400 and 450 °C. What is the effect on the position of equilibrium of using a temperature above 450 °C? Explain your answer.[2] (ii) What is the effect on the rate of using a temperature below 400 °C? Explain your answer.

(e) A	low pressure, 2 atmospheres, is used. At	t equilibrium, about 98% SO ₃ is present.	
(i) What is the effect on the position of eq	quilibrium of using a higher pressure?	
			[1]
(ii) Explain why a higher pressure is not u	hasi	
(11	, Explain willy a higher pressure is not u	ised.	
			[1]
(f) N	lame the catalyst used in the Contact prod	cess.	
			[1]
(g) D	escribe how concentrated sulfuric acid is	made from sulfur trioxide.	
			[2]
•	nem 13 Q# 16/ iGCSE Chemistry/2012/s/Paper	ast/ QigCSE Chemistry/201(c) neither acidic nor alkaline). Acid rain de	
	carbonate is a better choice.		
			[2]
nnic Ch	nem 13 Q# 17/ iGCSE Chemistry/2012/s/Paper		[-]
R		e compounds. The following is part of the	ne reactivity
	sodium	most reactive	
	calcium		
	zinc		
	copper silver	least reactive	
	Silvel	icast icacuve	
(a	 Sodium hydroxide and sodium carbo The corresponding calcium compou Complete the following equations. 	onate do not decompose when heated. inds do decompose when heated.	
	calcium carbonate →	+	
	Ca(OH) → +		ro
	$Ca(OH)_2 \rightarrow \dots + \dots$	•••	L ²

www.SmashingScience.org

Patrick Brannac

Page **250** of **294**

Q# 1/ iGCSE Chemistry/2014/w/Paper 31/

in air/oxygen COND on M1

[1]

(c) (i) V₂O₅

[1]

(ii) position of equilibrium shifts right/yield increases to save energy

(iii) faster reaction/rate

[1]

more collisions per second/higher collision frequency

[1]

fewer moles/molecules (of gas) on right

[1]

(so) position of equilibrium shifts right/yield increases

- [1]
- (d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid)

(b) (i)	anhydrous cobalt chloride becomes hydrated ACCEPT: hydrous	[1]
(ii)	carbon dioxide is acidic sodium hydroxide and calcium oxide are bases / alkalis	[1] [1]
(iii)	Any two of: water, calcium carbonate and sodium carbonate ACCEPT: sodium bicarbonate	[2]
Q# 3/ iGCSE	Chemistry/2011/s/Paper 31/ Q4	
then	high yield need low temperature rate would be too slow or uneconomic scussion of optimum temperature could score mark 1 and 2	[1] [1]
does	ence of catalyst would increase rate (at same temperature) s not alter the yield (at that temperature) onomic rate at lower temperature, therefore higher yield	[1] [1]
_	er pressure which would increase yield / rate I high enough / high pressure expensive	[1] [1] max [4]
	ept reverse arguments e increase yield ≡ position of equilibrium to right	
	Chemistry/2009/w/Paper 3/ bum sulfur in air or oxygen or heat a metal sulfide in air	[1]
(ii)	bleach for wood pulp/cloth/straw or preserve food or sterilising or making wine or fumigant or refrigerant Accept making paper	[1]
(iii)	vanadium(V) oxide accept vanadium oxide or V ₂ O ₅ or vanadium pentoxide oxidation state not essential but if given it has to be (V)	[1]
(iv)	rate too slow or rate not economic	[1]
(v)	reaction too violent or forms a mist	[1]
Q# 5/ iGCSE	Chemistry/2008/s/Paper 31/ QiGCSE Chemistry/201	
	nadium	[1]
ACCE	PT name or symbol	
	Chemistry/2007/w/Paper 3/	
4 (a) (i)	bleach for wood pulp or preserving food or sterilising or in wine making or as a refrigerant or in metallurgy or (liquid) sulphur dioxide is used in the petroleum industry or kill microbes(etc) or insecticide	[1]
(ii)	(react with) oxygen or air NOT burnt/burn in air/oxygen	[1]
	450°C	[1]
	vanadium oxide catalyst (if oxidation state given has to be correct) or platinum If four conditions are given which include high pressure then MAX [2] High pressure is incorrect MAX 10 atm.	[1]
	ammonium sulphate or superphosphate or potassium sulphate or magnesium sulphate	[1]
Q# 7/ iGCSE	Chemistry/2006/s/Paper 3/Q5 (b)	THEAT

www.SmashingScience.org

Patrick Brannac

Page **252** of **294**

(iii)	Low High Any: NOT	[1] [1]		
	bubb add	[1] [1]		
Q# 8/			sequential nemistry/2006/s/Paper 3/	
5			Burn sulphur in air (or oxygen)	[1]
	. ,		as a <u>bleach</u>	[1]
		(iii)	kill bacteria/micro-organisms NOT prevents food going bad or rotten or decaying	[1]
	(b)	(i)	decrease	[1]
		(ii)	exothermic	[1]
			COND increase temperature favours back reaction so it is endothermic, so forward reaction must be exothermic OR any similar explanation will be awarded the mark, for example The forward reaction is not favoured by an increase in temperature so it is exothermic (rather than endothermic)	[1]
		(iii)	Low enough for good yield High enough for (economic) rate Any similar explanation will be awarded the mark NOT just that it is the optimum temperature	[1] [1]
Q# 9/	iGC	SE Cł	nemistry/2005/s/Paper 3/	
(c)	(i)		adium oxide ${f or}$ vanadium(V) oxide ${f or}$ vanadium pentoxide or V_2O_5 ist be correct oxidation state if one given	[1]
	(ii)	400) to 500° C	[1]
	(iii)		to (concentrated) sulphuric acid NOT dilute ND (upon sulphuric acid) above then add water	[1] [1]
Q# 10	/ iGC	SE Cł	nemistry/2005/s/Paper 3/	
4	(a)	(i)	correct word equation (carbon dioxide and water) Accept correct symbol equation	[1
		(ii)	Must have a correct reagent otherwise wc = 0 add (acidified) barium chloride(aq) or nitrate or add barium ions COND white precipitate NOT lead(II) compounds	[1 [1
		(iii)	low pH or universal indicator turns red(aq) pH 3 or less	[1
	(b)	(i)	$H_2S + 2O_2 = H_2SO_4$ unbalanced [1]	[2

	(ii)	dioxide	sant smell or it is poisonous or when burnt forms or forms sulphuric acid s a pollutant	acid	rair		ur [1]
	(2e per h THREE TWO fro	Be around sulphur atom nydrogen atom			I	[2]
Q# 11/ 2.	iGCS (a)	E Cł	nemistry, (i)	/2004/s/Paper 3/ USA or Texas or Poland or Mexico or Japan or Ethio Australia or Sicily accept other sources of sulphur eg petroleum or natural gas or metal sulphides or volcanoes NOT coal, NOT underground	pia		[1]	
			(ii)	Preserving food or bleaching or sterilising or disinfecting or making paper or bleaching wood pulp or wine or jam or fumigation or making paper NOT making wood pulp			[1]	
			(iii)	burnt/roast in oxygen or air			[1]	
			(iv)	vanadium(V) oxide or vanadium oxide or platinum ignore oxidation state of vanadium			[1]	
			(v)	Increase temperature (increases rate) but reduces yie	eld		[1]	
				catalyst only increases rate or a catalyst does not influence position of equilibrium NOT a definition of a catalyst			[1]	
			(vi)	sulphur trioxide + sulphuric acid = oleum correct symbol equation acceptable			[1]	
			(vii)	$H_2S_2O_7 + H_2O = 2H_2SO_4$			[1]	
Q# 12/	iGCS	E Cł	nemistry,	/2003/w/Paper 3/				
5	(a)			rve food or sterilising ng paper		[1] [1]		
(b)	(ii)	02 va 4(cygen madium 00 to 500	oxide as catalyst (ignore oxidation state) o°C ess than 10 atm	[1] [1]			
			ny TW([2]			
Q# 13/	iGCS	E Cł	nemistry,	/2002/w/Paper 3/				
1	(a)	(i)	and acc temper pressur	um(V) oxide as catalyst - ignore oxidation state cept no oxidation state ature 300 to 600 °C re up to 10 atmos, accept atmospheric pressure ratio of gases either 2:1 or slight excess of oxygen hree	1			
		(ii)	forwar	back reaction is endothermic or same argument based reaction is exothermic [1] ease in temp favours back reaction	ed on			
		(iii		ve in (conc) sulphuric acid NOT dilute vater or dilute	[1] [1]	.4		

5 (a) (i) bleach

(ii) kills bacteria or germs or micro organisms [1]

Q# 15/ iGCSE Chemistry/2015/w/Paper 31/

Question	Answer	Marks
3(a)	fast(er) reaction; large(r) surface area;	1
3(b)	4.76 (dm³);	1
3(c)	moves equilibrium to right; increases yield (of sulfur trioxide)/uses up more sulfur dioxide;	1
3(d)(i)	moves equilibrium to left; (forward reaction) exothermic;	1
3(d)(ii)	decrease rate; molecules have less energy/move slower; fewer collisions (per second)/fewer particles have the activation energy/fewer collisions have the activation energy;	1 1 1
3(e)(i)	moves to right;	1
3(e)(ii)	high yield at 2 atm;	1
3(f)	vanadium(V) oxide/vanadium pentoxide;	1
3(g)	M1 dissolve/react sulfur trioxide in (concentrated) sulfuric acid; add water to product of M1;	1

Q# 16/ iGCSE Chemistry/2012/s/Paper 31/ QiGCSE Chemistry/201(c)

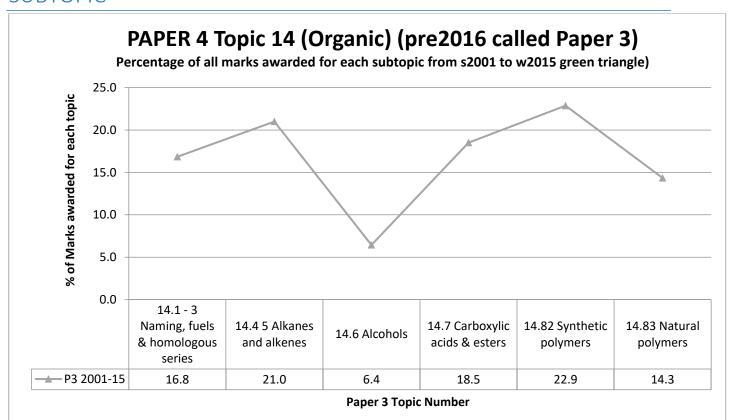
(ii)	calcium oxide is soluble in water / reacts with water to form calcium hydroxide; pH above 7 / the water becomes alkaline;	[1] [1]
	OR calcium carbonate insoluble in water; pH cannot be above 7 / water is neutral / does not make water alkaline;	[1] [1] [max 2]

Q# 17/ iGCSE Chemistry/2012/s/Paper 31/

5	(a)	calcium carbonate → calcium oxide + carbon dioxide accept: correct symbol equation	[1]
		$Ca(OH)_2 \rightarrow CaO + H_2O$	[1]

Q# 18/ iGCSE Chemistry/2006/w/Paper 3/Q3

(c)	(i)	Any reasonable explanation Plants prefer soil pH about 7 Plants do not grow (well) in acidic soils/plants grow better	
		To increase crop yields Any ONE Do NOT accept in acidic soils plants die	[1]
	(ii)	With calcium carbonate, pH cannot go above 7 It is not washed away by the rain/remains longer in the soil	[1]
		It is not absorbed by the plant OR	[1]
		With calcium oxide, pH can go above 7 It is washed away by the rain	[1] [1]
	(iii)	Any correct use - making steel/iron, making cement, making glass, disposing of acid wastes, removing sulphur dioxide from flue gases, (stone in) building, indigestion tablets, toothpaste, cosmetics etc	[1]


Q# 19/ iGCSE Chemistry/2006/w/Paper 3/

3 (a) limestone or marble or chalk or coral or calcite or aragonite [1]

[1]

iG Chem 14 EQ P3 Organic Chemistry 15w to 09s P3 216marks By SUBTOPIC

14 Organic chemistry

14.1 Names of compounds

Core

- Name and draw the structures of methane, ethane, ethene, ethanol, ethanoic acid and the products of the reactions stated in sections 14.4–14.6
- State the type of compound present, given a chemical name ending in -ane, -ene, -ol, or -oic acid or a molecular structure

Supplement

- Name and draw the structures of the unbranched alkanes, alkenes (not cis-trans), alcohols and acids containing up to four carbon atoms per molecule
- Name and draw the structural formulae of the esters which can be made from unbranched alcohols and carboxylic acids, each containing up to four carbon atoms

14.4 Alkanes

Core

- Describe the properties of alkanes (exemplified by methane) as being generally unreactive, except in terms of burning
- · Describe the bonding in alkanes

Supplement

 Describe substitution reactions of alkanes with chlorine

14.5 Alkenes

Core

- Describe the manufacture of alkenes and of hydrogen by cracking
- Distinguish between saturated and unsaturated hydrocarbons:
 - from molecular structures
 - by reaction with aqueous bromine
- Describe the formation of poly(ethene) as an example of addition polymerisation of monomer units

Supplement

 Describe the properties of alkenes in terms of addition reactions with bromine, hydrogen and steam

14.6 Alcohols

Core

- Describe the manufacture of ethanol by fermentation and by the catalytic addition of steam to ethene
- Describe the properties of ethanol in terms of burning
- Name the uses of ethanol as a solvent and as a fuel

Supplement

 Outline the advantages and disadvantages of these two methods of manufacturing ethanol

14.7 Carboxylic acids

Core

 Describe the properties of aqueous ethanoic acid

Supplement

- Describe the formation of ethanoic acid by the oxidation of ethanol by fermentation and with acidified potassium manganate(VII)
- Describe ethanoic acid as a typical weak acid
- Describe the reaction of a carboxylic acid with an alcohol in the presence of a catalyst to give an ester

14.8 Polymers

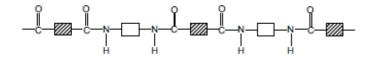
14.8.1 Polymers

Core

 Define polymers as large molecules built up from small units (monomers)

14.8.2 Synthetic polymers

Core


- Name some typical uses of plastics and of man-made fibres such as nylon and Terylene
- Describe the pollution problems caused by non-biodegradable plastics

Supplement

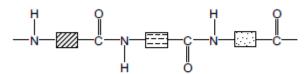
 Understand that different polymers have different units and/or different linkages

Supplement

- Explain the differences between condensation and addition polymerisation
- Deduce the structure of the polymer product from a given alkene and vice versa
- Describe the formation of nylon (a polyamide) and Terylene (a polyester) by condensation polymerisation, the structure of nylon being represented as:

and the structure of Terylene as:

(Details of manufacture and mechanisms of these polymerisations are **not** required.)


14.8.3 Natural polymers

Core

Name proteins and carbohydrates as constituents of food

Supplement

- Describe proteins as possessing the same (amide) linkages as nylon but with different units
- Describe the structure of proteins as:

- Describe the hydrolysis of proteins to amino acids. (Structures and names are not required.)
- · Describe complex carbohydrates in terms of a large number of sugar units, considered as HO OH, joined together by condensation polymerisation, e.g.
- Describe the hydrolysis of complex carbohydrates (e.g. starch), by acids or enzymes to give simple sugars
- Describe the fermentation of simple sugars to produce ethanol (and carbon dioxide). (Candidates will not be expected to give the molecular formulae of sugars.)
- Describe, in outline, the usefulness of chromatography in separating and identifying the products of hydrolysis of carbohydrates and proteins

Topic Chem 14 SubTopic: Carboxylic acids & Esters Q# 1/ iGCSE Chemistry/2009/w/Paper 3/Q7b

(ii) Write a word equation for the preparation of the ester butyl methanoate.

[2]

Topic Chem 14 SubTopic: Carboxylic acids & Esters Q# 2/ iGCSE Chemistry/2010/s/Paper 31/

- 4 Hydrolysis is used in chemistry to break down complex molecules into simpler ones.
 - (a) Compounds containing the group C or -

(i)	Give the names and formulae of the two compounds formed when the ester ethyl propanoate is hydrolysed.

0—0	CH ₂ —CH ₃
name	name
formula	formula

(iii)	Name a synthetic polyester.	
	[′	1]

Topic Chem 14 SubTopic: Carboxylic acids & Esters Q# 3/ iGCSE Chemistry/2010/s/Paper 31/

CH₃—CH₂—C(

- 8 Methanoic acid is the first member of the homologous series of carboxylic acids.
 - (b) In some areas when water is boiled, the inside of kettles become coated with a layer of calcium carbonate. This can be removed by adding methanoic acid.
 - (i) Complete the equation.

..... HCOOH +
$$CaCO_3 \rightarrow Ca(HCOO)_2$$
 + + [2]

(ii) Methanoic acid reacts with most metals above hydrogen in the reactivity series. Complete the word equation.

zinc	+	methanoic acid	\rightarrow	+	
					[2]

Topic Chem 14 SubTopic: Carboxylic acids & Esters Q# 4/ iGCSE Chemistry/2011/s/Paper 31/ Q6 (a)

(ii)	Explain, in general terms, what is meant by fermentation.												
	[3]												

[4]

(b)	Butanol	can	be	oxidised	to	а	carboxylic	acid	by	heating	with	acidified	potassium
	mangan	ate(\	/II).	Give the	nan	ne	and structu	ral fo	rmu	la of the	carbo	xylic acid.	

name	[1]
structural formula	

[1]

- (c) Butanol reacts with ethanoic acid to form a liquid, X, which has the sweet smell of bananas. Its empirical formula is C₃H₈O and its M_r is 116.
 - (i) What type of compound is liquid X?

[1]

(ii) Give the molecular formula of liquid X.

(iii) Draw the structural formula of X. Show all the individual bonds.

[2]

Topic Chem 14 SubTopic: Carboxylic acids & Esters Q# 5/ iGCSE Chemistry/2012/s/Paper 31/

6 Butane is an alkane. It has the following structural formula.

- (c) One of the chlorobutanes reacts with sodium hydroxide to form butan-1-ol. Butan-1-ol can be oxidised to a carboxylic acid.
 - (i) State a reagent, other than oxygen, which will oxidise butan-1-ol to a carboxylic acid.

	U

(ii) Name the carboxylic acid formed.

[']		[1]	
-----	--	-----	--

(iii) Butan-1-ol reacts with ethanoic acid to form an ester. Name this ester and give its structural formula showing all the individual bonds.

name		[1	IJ	
------	--	----	----	--

structural formula

[2]

Topic Chem 14 SubTopic: Carboxylic acids & Esters Q# 6/ iGCSE Chemistry/2014/w/Paper 31/

- 6 Esters, polyesters and fats all contain the ester linkage.
 - (a) Esters can be made from alcohols and carboxylic acids. For example, the ester ethyl ethanoate can be made by the following reaction.

(i) Name the carboxylic acid and the alcohol from which the following ester could be made.

name of carboxylic acid	

	(ii)	$6.0\mathrm{g}$ of ethanoic acid, M_r = 60 , was reacted with $5.5\mathrm{g}$ of ethanol, M_r = 46 . Determine which is the limiting reagent and the maximum yield of ethyl ethanoate,	$M_{\rm r} = 88.$	
		number of moles of ethanoic acid =	[1]	
		number of moles of ethanol =	[1]	
		the limiting reagent is	[1]	
		number of moles of ethyl ethanoate formed =	[1]	
		maximum yield of ethyl ethanoate =	[1]	
opic Ch	em 1	4 SubTopic: Carboxylic acids & Esters Q# 7/ iGCSE Chemistry/2015/s/Paper 31/ Q4		
(c) Th	is qu	estion is based on typical reactions of butan-1-ol.		
(ii)	Su	ggest the name of the ester formed from butanol and ethanoic acid.		
			[1]	
(iii)	But	tan-1-ol is oxidised by acidified potassium manganate(VII).		
	De	duce the name and the structural formula of the organic product in this reaction.		
	nai	ne		
	str	uctural formula		
			[2]	
opic Ch	em 1	4 SubTopic: Carboxylic acids & Esters Q# 8/ iGCSE Chemistry/2015/w/Paper 31/ NOT w/ith !		
•		pound X has/ the molecular formula of C ₄ H ₆ O ₂	()	
(b)	(i)	Bromine water changes from brown to colourless when added to X.		
		What does this tell you about the structure of X?		
			[4]	
			[1]	
	(ii)	Magnesium powder reacts with an aqueous solution of X . Hydrogen is evolved.		
		What does this tell you about the structure of X?		
			[1]	
	(iii)	X contains two different functional groups.		
		Draw a structural formula of X.		

Topic Chem 14 SubTopic: Alkanes and alkenes **Q# 9/** iGCSE Chemistry/2009/s/Paper 31/Q8

Page **263** of **294**

(c)	When	lactic acid	is	heated.	acrylic	acid is	formed.
-----	------	-------------	----	---------	---------	---------	---------

(i)	(i) Complete the word equation for the action of heat on lactic acid.						
	lactic acid →+	[1]					
(ii)	Describe a test that would distinguish between lactic acid and acrylic acid.						
	test						
	result for lactic acid	.					
	result for acrylic acid	[3]					
Topic Chem	n 14 SubTopic: Alkanes and alkenes Q# 10/ iGCSE Chemistry/2009/w/Paper 3/						

7 Butan-1-ol is used as a solvent for paints and varnishes, to make esters and as a fuel. Butan-1-ol can be manufactured from but-1-ene, which is made from petroleum.

Biobutanol is a fuel of the future. It can be made by the fermentation of almost any form of biomass - grain, straw, leaves etc.

- (a) But-1-ene can be obtained from alkanes such as decane, C₁₀H₂₂, by cracking.
 - (i) Give the reaction conditions.

IO

(ii) Complete an equation for the cracking of decane, $C_{10}H_{22}$, to give but-1-ene.

$C_{10}H_{22}$	\rightarrow		[2]	
----------------	---------------	--	-----	--

(iii) Name the reagent that reacts with but-1-ene to form butan-1-ol.

r /	11
1	ш
 	٠,

Topic Chem 14 SubTopic: Alkanes and alkenes Q# 11/ iGCSE Chemistry/2010/s/Paper 31/

- Ozone is a form of oxygen. Ozone is present in the upper atmosphere and it prevents dangerous solar radiation from reaching the Earth's surface. Some of the chemicals that diffuse into the upper atmosphere decompose ozone. Chemicals that have this effect are methane (CH₄), chloromethane (CH₃C1) and an oxide of nitrogen (NO₂).
- (iii) How can chloromethane be made from methane?

reagent	
condition	[2

Topic Chem 14 SubTopic: Alkanes and alkenes Q# 12/ iGCSE Chemistry/2010/w/Paper 31/Q5

(b) An important monomer is chloroethene which has the structural formula shown below.

It is made by the following method.

$$C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2$$
 dichloroethane

This is heated to make chloroethene.

$$C_2H_4Cl_2 \rightarrow C_2H_3Cl + HCl$$

(i) Ethene is made by cracking alkanes. Complete the equation for cracking dodecane.

$$C_{12}H_{28} \rightarrow \dots + 2C_{2}H_{4}$$
 [1]

Another method of making dichloroethane is from ethane.

$$C_2H_B + 2Cl_2 \rightarrow C_2H_4Cl_2 + 2HCl$$

(ii) Suggest a reason why the method using ethene is preferred.

		[1]

Topic Chem 14 SubTopic: Alkanes and alkenes Q# 13/ iGCSE Chemistry/2011/s/Paper 31/

6 The structural formula of a butanol is given below.

- (a) Butanol can be made from petroleum and also by fermentation.
 - (i) Describe the chemistry of making butanol from petroleum by the following route.

petroleum → butene → butanoi				
	[3]			
	[0]			

Topic Chem 14 SubTopic: Alkanes and alkenes Q# 14/ iGCSE Chemistry/2012/s/Paper 31/

6 Butane is an alkane. It has the following structural formula.

(b)	But	ane reacts with chlorine to form two isomers of chlorobutane.
	(i)	What type of reaction is this?
	(ii)	Explain the term isomer.
		[2]
(iii)	Dr	aw the structural formulae of these two chlorobutanes.
		[2]
Topic	Chen	n 14 SubTopic: Alkanes and alkenes Q# 15/ iGCSE Chemistry/2012/w/Paper 31/Q6
	(c)	Butter contains mainly saturated fats. Fats based on vegetable oils, such as olive oil, contain mainly unsaturated fats.
		A small amount of fat was dissolved in an organic solvent. Describe how you could determine if the fat was saturated or unsaturated.
		[2]

(e) Describe a test which would distinguish between cyclohexane a hydrocarbon hexene.			e a test which would distinguish between cyclohexane and the unsaturated irbon hexene.
	test		
	res	ult of	test with cyclohexane
	res	ult of	test with hexene
			[3]
Topic	Cher	n 14 S	SubTopic: Alkanes and alkenes Q# 17/ iGCSE Chemistry/2013/w/Paper 31/
7	(a)		e following are two examples of substitution reactions. Only the reaction involving orine is a photochemical reaction.
			$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$
			$CH_4 + Br_2 \rightarrow CH_3Br + HBr$
		(i)	Explain the phrase substitution reaction.
			[1]
		(ii)	How do photochemical reactions differ from other reactions?
			[1]
Topic			SubTopic: Alkanes and alkenes Q# 18/ iGCSE Chemistry/2013/w/Paper 31/
5	whi	ch h	enes are unsaturated hydrocarbons. They form a homologous series, the members of ave the same chemical properties. dergo addition reactions and are easily oxidised.
		Giv	e the structural formula and name of each of the products of the following addition ctions.
		(i)	ethene and bromine
			structural formula of product
			name of product[2]
		(ii)	propene and hydrogen
			structural formula of product
			name of product

Topic Chem 14 SubTopic: Alkanes and alkenes Q# 16/ iGCSE Chemistry/2013/s/Paper 31/Q3

Patrick Brannac

	(iii)	but-1-ene and water	
		structural formula of product	
		name of product	[2]
(c) Al	kenes	can be oxidised to carboxylic acids.	
(i)	and	example, propene, $\mathrm{CH_3-CH=CH_2}$, would produce ethanoic acid, $\mathrm{CH_3-COOH}$, if methanoic acid, $\mathrm{H-COOH}$. Deduce the formulae of the alkenes which would in the following carboxylic acids when oxidised.	
	eth	anoic acid and propanoic acid	
	onl	y ethanoic acid	
		[2]	
	D-		
(11)		scribe the colour change you would observe when an alkene is oxidised with diffied potassium manganate(VII).	
		[2]	
-	em 14 S	SubTopic: Alkanes and alkenes Q# 19/ iGCSE Chemistry/2014/w/Paper 31/ Q6	
(c) Fats belo		vegetable oils are esters. The formulae of two examples of natural esters are given	
		ÇH ₂ —CO ₂ —C ₁₇ H ₃₃	
		CH ₂ —CO ₂ —C ₁₇ H ₃₃	
		CH ₂ —CO ₂ —C ₁₇ H ₃₃ CH ₂ —CO ₂ —C ₁₇ H ₃₅	
		ester 1 ester 2	
(i)		ester is saturated, the other is unsaturated. ribe a test to distinguish between them.	
	test		
	result	with unsaturated ester	
	result	with saturated ester	

(Deduce which one of the above esters is unsaturated. Give a reason for your choice.	
		[2	2]
Topic 5	The	14 SubTopic: All up to & including homologous series Q# 20/ iGCSE Chemistry/2009/w/Paper 3 first three elements in Group IV are carbon, silicon and germanium. elements and their compounds have similar properties.	3/
(c)	Ger	manium forms a series of hydrides comparable to the alkanes.	
	(i)	Draw the structural formula of the hydride which contains four germanium ato per molecule.	oms
	(ii)	Predict the products of the complete combustion of this hydride.	[1]
			[2]
Topic	Chem	14 SubTopic: All up to & including homologous series Q# 21/ iGCSE Chemistry/2009/w/Paper 3	3/ Q7
(c)		fermentation of biomass by bacteria produces a mixture of products which outanol, propanol, hydrogen and propanoic acid.	include
	(i)	Draw the structural formula of propanol and of propanoic acid. Show all the	e bonds.
		propanol	
		propanoic acid	

	(ii)	Why is it important to develop these fuels, such as biobutanol, as alternatives petroleum?	to
			[1]
(d)		w could you show that butanol made from petroleum and biobutanol are the emical?	same
Горіс		n 14 SubTopic: All up to & including homologous series Q# 22/ iGCSE Chemistry/2009/w/Paper 3/Q7 (i) Balance the equation for the complete combustion of butan-1-ol.	
Горіс 8		$C_4H_9OH + C_2 \rightarrow CO_2 + H_2O$ [2 m 14 SubTopic: All up to & including homologous series Q# 23/ iGCSE Chemistry/2010/s/Paper 31/ thanoic acid is the first member of the homologous series of carboxylic acids.]
	(a)	Give two general characteristics of a homologous series.	
		[2]
	(c)	Give the name, molecular formula and empirical formula of the fourth acid in this series	-
		name[1]
		molecular formula[1]
		empirical formula[1]
•		n 14 SubTopic: All up to & including homologous series Q# 24/ iGCSE Chemistry/2011/w/Paper 31/ tural formulae are an essential part of Organic Chemistry.	
	(a) [Oraw the structural formula of each of the following. Show all the bonds in the structure.	
	(i) ethanoic acid	

[1]

(ii) ethanol

Topic Chem 14 SubTopic: All up to & including homologous series Q# 25/ iGCSE Chemistry/2013/s/Paper 31/

Petroleum contains hydrocarbons which are separated by fractional distillation. (a) (i) Complete the following definition of a hydrocarbon. A hydrocarbon is a compound which (ii) Explain what is meant by the term fractional distillation.[2] (b) Some of the fractions obtained from petroleum are given below. State a use for each fraction. bitumen lubricating fraction paraffin fraction [4] gasoline fraction Topic Chem 14 SubTopic: All up to & including homologous series Q# 26/ iGCSE Chemistry/2013/s/Paper 31/ The structural formula of cyclohexane is drawn below. (a) The name gives information about the structure of the compound. Hex because there are six carbon atoms and cyclo because they are joined in a ring. What information about the structure of this compound is given by the ending ane?

(b) What are the molecular and empirical formulae of cyclohexane?

molecular formula empirical formula

(c) Draw the structural formula of cyclobutane.

		[1]

- (d) (i) Deduce the molecular formula of hexene.
 - (ii) Explain why cyclohexane and the alkene, hexene, are isomers.

.....[1]

[2]

Topic Chem 14 SubTopic: All up to & including homologous series Q# 27/ iGCSE Chemistry/2013/w/Paper 31/

- 5 The alkenes are unsaturated hydrocarbons. They form a homologous series, the members of which have the same chemical properties. They undergo addition reactions and are easily oxidised.
 - (a) The following hydrocarbons are isomers.

- (i) Explain why these two hydrocarbons are isomers.
- (ii) Give the structural formula of another hydrocarbon which is isomeric with the above.

[1]

Topic Chem 14 SubTopic: All up to & including homologous series Q# 28/ iGCSE Chemistry/2014/s/Paper 31/ Q3

(c) Most helium is obtained from natural gas found in the USA. Natural gas contains methane and 7% helium. One possible way to obtain the helium would be to burn the methane.

(i)	Write an equation	for the complete	e combustion of methane.	

	[1]
(ii)	Suggest why this would not be a suitable method to obtain the helium.

.....[1]

Topic Chem 14 SubTopic: All up to & including homologous series Q# 29/ iGCSE Chemistry/2015/s/Paper 31/

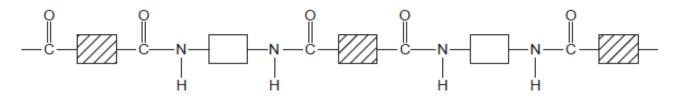
The alcohols form a homologous series.

(a)	(i)	Give \mbox{three} characteristics which all members of a homologous series share.	

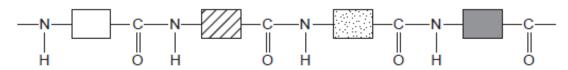
[2]

(ii) Give the name of the third member of this series.

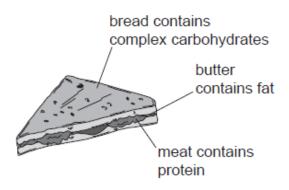
name	[1]


(iii) Deduce the molecular formula of the alcohol whose $M_r = 158$. Show your working.

			[0]
 	 	 	[2]


(b) Explain why the following two alcohols are isomers.

(c) Two macromolecules have the same amide linkage. Nylon, a synthetic polymer, has the following structure.


Protein, a natural macromolecule, has the following structure.

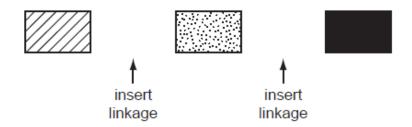
	How are they different?	
r/		

Topic Chem 14 SubTopic: Natural polymers Q# 31/ iGCSE Chemistry/2012/w/Paper 31/

6 A sandwich contains three of the main constituents of food.

(a) (i) These constituents of food can be hydrolysed by boiling with acid or alkali. Complete the table.

constituent of food	product of hydrolysis
protein	
complex carbohydrate	


[2]

(ii) What type of synthetic polymer contains the same linkage as proteins?

[1]

(b) An incomplete structural formula of a protein is given below. Complete this diagram by inserting the linkages.

Topic Chem 14 SubTopic: Natural polymers Q# 32/ iGCSE Chemistry/2015/w/Paper 31/

- Describe how to separate the following. In each example, give a description of the procedure used and explain why this method works.
 - (c) Glycine from a mixture of the two amino acids glycine and alanine. Glycine has the lower R, value. procedure

explanation

[2]

[2]

Topic Chem 14 SubTopic: Natural polymers Q# 33/ iGCSE Chemistry/2015/w/Paper 31/ Q7 (c)

(iii) The structural formula of glucose can be represented by H-O-

Draw part of the structural formula of starch which contains two glucose units.

[2] (iv) Living organisms need carbohydrates for respiration. What is meant by respiration?

Topic Chem 14 SubTopic: Alcohols Q# 34/ iGCSE Chemistry/2015/s/Paper 31/ Q4

- (c) This question is based on typical reactions of butan-1-ol.
 - (i) When butan-1-ol, CH₃-CH₂-CH₂-CH₂-OH, is passed over the catalyst silicon(IV) oxide, water is lost.

Deduce the name and the structural formula of the organic product in this reaction.

name

structural formula

[2]

[2]

Topic Chem 14 SubTopic: Synthetic polymers Q# 35/ iGCSE Chemistry/2009/s/Paper 31/

8 Lactic acid can be made from com starch.

lactic acid

It polymerises to form the polymer, polylactic acid (PLA) which is biodegradable.

(a)	Suggest two advantages that PLA has compared with a polymer made from petroleum

(b) The structure of PLA is given below.

(i) What type of compound contains the group that is circled?

[1]

	Complete the following sentence.	
	Lactic acid molecules can form this group because they contain both an	
	group and angroup.	[2]
(iii)	Is the formation of PLA, an addition or condensation polymerisation? Give reason for your choice.	a
		[2]
	-N- -C-N- -C-N	
i)	What is the name of the polymer linkage?	
		[1]
i)	Draw the structural formula of a man-made polymer with the same linkage	
.,	Draw are caracterial formalia of a main made perfiner man are came immage.	
		[3]
iem 1	4 SubTopic: Synthetic polymers Q# 37/ iGCSE Chemistry/2010/w/Paper 31/	[3]
	4 SubTopic: Synthetic polymers Q# 37/ iGCSE Chemistry/2010/w/Paper 31/ ners polymerise to form polymers or macromolecules.	[3]
		[3]
onon	ners polymerise to form polymers or macromolecules.	[3]
onon	ners polymerise to form polymers or macromolecules.	
onon	ners polymerise to form polymers or macromolecules. Explain the term <i>polymerise</i> .	
onom	ners polymerise to form polymers or macromolecules. Explain the term polymerise. There are two types of polymerisation - addition and condensation. What is	
onom	ners polymerise to form polymers or macromolecules. Explain the term polymerise. There are two types of polymerisation - addition and condensation. What is	
	iem 14 The	(iii) Is the formation of PLA, an addition or condensation polymerisation? Give reason for your choice. Item 14 SubTopic: Synthetic polymers Q# 36/ iGCSE Chemistry/2010/s/Paper 31/Q4 The structure of a typical protein is drawn below. -N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N

Topic Chem 14 SubTopic: Synthetic polymers Q# 38/ iGCSE Chemistry/2010/w/Paper 31/

- 5 Monomers polymerise to form polymers or macromolecules.
- (b)

An important monomer is chloroethene which has the structural formula shown below.

$$C = C$$

(iv) Draw the structural formula of poly(chloroethene).

Include three monomer units.

[2]

Topic Chem 14 SubTopic: Synthetic polymers Q# 39/ iGCSE Chemistry/2011/s/Paper 31/

8 There are two types of polymerisation - addition and condensation.

(a)	Explain	the	difference	between	them.
-----	---------	-----	------------	---------	-------

[2]	

(b) Poly(dichloroethene) is used to package food. Draw its structure. The structural formula of dichloroethene is shown below.

(c) The polymer known as PVA is used in paints and adhesives. Its structural formula is shown below.

Deduce the structural formula of its monomer.

[1]

Topic Chem 14 SubTopic: Synthetic polymers Q# 40/ iGCSE Chemistry/2011/s/Paper 31/ Q8

(d) A condensation polymer can be made from the following monomers.

Draw the structural formula of this polymer.

[3]

Topic Chem 14 SubTopic: Synthetic polymers Q# 41/ iGCSE Chemistry/2011/w/Paper 31/Q6

(b) (i) Ethanoic acid and ethanol react to form an ester. What is the name of this ester?

.....[1

(ii)	The same linkage is found in polyesters. Draw the structure of the polyester which
	can be formed from the monomers shown below.

$$\ensuremath{\mathrm{HOOC-C_6H_4-COOH}}$$
 and $\ensuremath{\mathrm{HO-CH_2-CH_2-OH}}$

	(iii) D	escribe the pollution problems caused by non-biodegradable polymers.	[3]
Topic 7			SubTopic: Synthetic polymers Q# 42/ iGCSE Chemistry/2012/s/Paper 31/ are polymers. They are formed from their monomers by polymerisation.	. [2]
	(a)	Two	o methods for the disposal of waste plastics are	
		•	burning recycling.	
		Des	scribe one advantage and one disadvantage of each method.	
		bur	ning	
		rec	ycling	
	(b)	(i)	There are two types of polymerisation reaction. Give their names and e differences between them.	
				[41

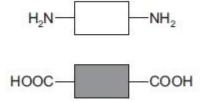
(ii) Give the structural formula of a polymer which is formed from two different monomers.

[2]

Topic Chem 14 SubTopic: Synthetic polymers Q# 43/ iGCSE Chemistry/2013/w/Paper 31/

- 5 The alkenes are unsaturated hydrocarbons. They form a homologous series, the members of which have the same chemical properties. They undergo addition reactions and are easily oxidised.
- (d) Alkenes polymerise to form addition polymers. Draw the structural formula of poly(cyanoethene), include at least two monomer units. The structural formula of the monomer, cyanoethene, is given below.

[3]


Topic Chem 14 SubTopic: Synthetic polymers Q# 44/ iGCSE Chemistry/2014/s/Paper 31/

- 8 Polymers are made by the polymerisation of simple molecules called monomers.
 - (a) (i) The structural formula of a polymer is given below.

This polymer is made by addition polymerisation. Draw the structural formula of its monomer.

(ii) The two monomers shown below form a nylon which is a condensation polymer.

Draw its structural formula showing one repeat unit of the polymer.

				[3]
	(i	iii)	Name the natural macromolecule which contains the same linkage as nylon.	
			8	[1]
	(i	iv)	Explain the difference between addition polymerisation and condensation polymerisation	risation.
				222
(b)	Mai	ny p	polymers are non-biodegradable.	
	(i)	Ex	plain the term non-biodegradable.	
	(ii)	Sta	ate three problems caused by the disposal of non-biodegradable polymers.	[2]
				[3]
(c)			e tanks for cold water are now made from polymers because they are cheaper tanks. Suggest two other advantages of making cold water tanks from polymers.	han
				[2]
				[-]

Topic Chem 14 SubTopic: Synthetic polymers Q# 45/ iGCSE Chemistry/2014/w/Paper 31/Q6

(b) The following two monomers can form a polyester.

ноос-///-соон	но-	—он
//// 00011		VII.

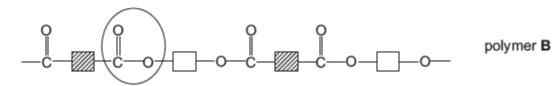
Draw the structural formula of this polyester. Include two ester linkages.

[3]

Topic Chem 14 SubTopic: Synthetic polymers Q# 46/ iGCSE Chemistry/2015/w/Paper 31/

- 4 (a) Synthetic polymers are disposed of in landfill sites and by burning.
 - (i) Describe two problems caused by the disposal of synthetic polymers in landfill sites.

.....[2]


(ii) Describe one problem caused by burning synthetic polymers.

.....[1]

(b) State two uses of synthetic polymers.

(c) The structural formulae of two synthetic polymers are given below.

polymer A

(i) Draw the structural formula of the monomer of polymer A.

	(ii) Identify the functional group circled in polymer B .	
	(iii) Deduce the two types of organic compound which have reacted to form polymer E	
			[2]
(d)		in the difference between addition and condensation polymers. Classify A and B addition or condensation polymers.	as
Ma	rk S	cheme iG Chem 14 EQ P3 Organic Chemistry	
Q# 1,	/ igcse	Chemistry/2009/w/Paper 3/	
	(i	 butanol + methanoic acid → butyl methanoate + water correct products or reactants ONLY 	[2] [1]
		Chemistry/2010/s/Paper 31/ i) ethanol CH ₃ -CH ₂ -OH	[1] [1]
		propanoic acid CH ₃ -CH ₂ -COOH independent marking, no ecf accept C ₂ H ₅ not – HO	[1] [1]
	(i	i) terylene / PET / Dacron / diolen / mylar / crimplene	[1]
Q# 3,		Chemistry/2010/s/Paper 31/ same general formula same chemical properties same functional group physical properties vary in predictable way common methods of preparation	
		consecutive members differ by CH ₂ any two mark first two ignore others unless it contradicts a point which has been awarded a mark	[2]
	(b)	(i) 2HCOOH + CaCO ₃ → Ca(HCOO) ₂ + CO ₂ + H ₂ O not balanced = [1]	[2]
		(ii) zinc + methanoic acid → zinc methanoate + hydrogen[1] for each product	[2]
		(iii) protected by oxide layer	[1]

(c) butanoic acid $CH_3\text{-}CH_2\text{-}CH_2\text{-}COOH / C_4H_8O_2 / C_3H_7COOH / C_4H_7OOH \\ C_2H_4O \\ mark \ \textbf{ecf} \ \text{to molecular formula}$			[1] [1] [1]
	SE Chemistry/2011/s/Paper 31/ Q6 (a) i) glucose / sugar changed to alcohol / ethanol accept an unbalanced equation (catalysed by) enzymes / yeast			[2] [1]
` (utanoic acid CH ₃ -CH ₂ -CH ₂ -COOH ydrogen atoms omitted from ends of bonds, penalise o	nce		[1] [1]
(c) (i) ester			[1]
(i	i) C ₆ H ₁₂ O ₂ ignore CH ₃ COOC₄H ₉			[1]
(ii	i) correct structural formula of butyl ethanoate showing	g all b	onds	[2]
	SE Chemistry/2012/s/Paper 31/ potassium manganate(VII) / potassium dichromate(\note: do not insist on oxidation numbers but if given			[1]
(ii)	butanoic acid;			[1]
(iii)	butyl ethanoate;			[1]
	correct formula all bonds shown = [2] if alkyl groups incorrect then correct ester linkage sho	owing	bonds = [1]	[2]
	SE Chemistry/2014/w/Paper 31/			
6 (a)	(i) butanoic acid methanol			[1] [1]
	number of moles of ethanoic acid = 0.1 number of moles of ethanol = 0.12(0) the limiting reagent is ethanoic acid number of moles of ethyl ethanoate formed = 0.1 maximum yield of ethyl ethanoate is 8.8 g			[1] [1] [1] [1]
	SE Chemistry/2015/s/Paper 31/		I to	
4(c)(ii)	butyl ethanoate;	1	A butanyl R ethenoate and ethanoic	
4(c)(iii)	butanoic acid; structural formula of butanoic acid;	2	A butyric acid Minimum acceptable structure is CH ₃ CH ₂ CH ₂ CO ₂ H A CH ₃ CH ₂ CH ₂ COOH with C-HO connectivity in acid group	
Q# 8/ iGC	SE Chemistry/2015/w/Paper 31/	'	-	'

- 1	,		
	5(b)(i)	unsaturated/C=C double bond/alkene;	1
	5(b)(ii)	(organic/carboxylic) add/contains or releases H* ions;	1
	5(b)(iii)	CH ₃ CH=CHCOOH/CH ₂ =CHCH ₂ COOH/CH ₂ =CH(CH ₃)COOH;	1

Q# 9/ iGCSE Chemistry/2009/s/Paper 31/Q8

/		_	The state of the s	
(c)	(i)	lac	etic acid → acrylic acid + water	[1]
	(ii)	rei go If r	d bromine (water) or bromine in an organic solvent mains brown/orange/yellow es colourless NOT clear mark 1 near miss e.g. bromide allow marks 2 and 3 blour of reagent must be shown somewhere for [3] otherwise max [2]	[1] [1] [1]
			R acidified potassium manganate(VII) rple/pink to colourless	
		pu	R alkaline potassium manganate(VII) rple/pink to green purple/pink to brown precipitate	
Q# 10	0/ iG	iCSE (Chemistry/2009/w/Paper 3/	
7	-	(i)	heat catalyst	[1] [1]
		(ii)	an equation that gives: alkene + alkane or alkene + hydrogen	[1]
			a correct and balanced equation for the cracking of decane, C ₁₀ H ₂₂ but not but-1-ene	[1]
		(iii)	water or steam	[1]
Q# 1 :			Chemistry/2010/s/Paper 31/	1.1
(iii)	chl	orine		[1]
()	co 20	t chl nd li	orine water ght / UV / heat / high temperature if numerical value given about / lead tetraethyl	[1]
Q# 12	2/ iG	icse (Chemistry/2010/w/Paper 31/	
	(b)	(i)	$C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ / any other correct version	[1]
		(ii)	ethane and chlorine give range of products / ethene more readily available than ethane / waste half chlorine as hydrogen chloride / ethene more reactive than ethane	[1]
Q# 13 6			Chemistry/2011/s/Paper 31/ cracking / heat with catalyst to make butane butene reacts with steam/water / hydrated accept heat and catalyst for cracking but if specified: 450 to 800°C zeolite aluminosilicates / silica / aluminium oxide/alumina / china / broken pot / porcela chromium oxide	
Q# 14	4/ iG	iCSE (Chemistry/2012/s/Paper 31/	
(b)	(i)	ch	lorination / substitution / photochemical / exothermic / halogenation / free radical;	[1]
	(ii)	(cc	ompounds) same molecular formula; different structural formulae;	[2]

(iii) CH₃-CH₂-CH₂-CH₂-C*l* CH₃-CH₂-CH(C*l*)-CH₃

Q# 1	5/ IG(CSE (Chemistry/2012/w/Paper 31/		
	(c)	uns	omine / bromine water / aqueous bromine; saturated - brown / orange to colourless not : clear curated - stays brown / orange		[1] [1] [1]
			alkaline potassium manganate(VII); from purple/pink to green / brown; stays purple; acidic potassium manganate(VII) from purple/pink to colourless; not : clear stays purple;		
Q# 1	6/ iG	CSE (Chemistry/2013/s/Paper 31/Q3		
(e)	add I	oron	nine (water) or (I)	[1]	
	cond	d: (re	emains) brown or orange or red or yellow	[1]	
	cond not:		anges from brown, etc. to colourless or decolourises	[1]	
	note	: oxi	m manganate(VII) dation state not essential but if given must be correct or [0] potassium permanganate	[1]	
	cond	l: re	mains pink / purple	[1]	
	cond		anges from pink to colourless (acidic)	[1]	
	cond	l: ch	ange from pink to green / brown (alkaline)		
Q# 1			Chemistry/2013/w/Paper 31/		
7			hydrogen (atoms) replaced by (atoms) of a different element e.g. chlorine NOT: substitute		[1]
		(ii)	light required		[1]
Q# 1			Chemistry/2013/w/Paper 31/		1.4
5	(a)	(i)	have same molecular formula / both are C_5H_{12} they have different structural formulae / different structures		[1] [1]
		(ii)	CH ₃ -CH ₂ -CH=CH-CH ₃ / any other correct isomer		[1]
	(b)	(i)	CH_2 -(Br)- CH_2 Br NOT : C_2H_4 Br ₂ dibromoethane NOTE : numbers not required but if given must be 1, 2		[1] [1]
		(ii)	CH ₃ -CH ₂ -CH ₃ NOT: C ₃ H ₈ propane		[1] [1]
	(iii)	CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ butanol numbers not required but if given must be correct and match formula		[1] [1]
	(c)	(i)	CH ₃ -CH=CH-CH ₂ -CH ₃ CH ₃ -CH=CH-CH ₃		[1] [1]
		(ii)	pink / purple		[1]

NOT: clear

Q# 19/ IGCS	E Chemistry/2014/w/Paper 31/ Qb	
(c) (i)	add bromine water/bromine turns colourless remains brown/orange/reddish brown/yellow	[1] [1] [1]
	ALLOW: potassium manganate(VII) (acidic or alkaline) correct colour colourless/green or brown ppt stays pink/purple	[1] [1] [1]
(ii)	ester 1 COND alkyl group is C_nH_{2n+1} which is NOT $C_{17}H_{33}$ or $C_{17}H_{35}$ is C_nH_{2n+1} or less hydrogen	[1] [1]
(iii)	soap or (sodium) salt (of a carboxylic acid) or carboxylate	[1]
	alcohol	[1]
Q# 20/ iGCS	E Chemistry/2009/w/Paper 3/	
(c) (i) s	tructural formula of Ge ₄ H ₁₀ all bonds shown	[1]
	ermanium(IV) oxide vater	[1] [1]
Q# 21/ iGCS	E Chemistry/2009/w/Paper 3/ Q7	
(c) (i)	correct structural formulae [1] each accept either propanol and –OH in alcohol and acid penalise once for CH ₃ type diagrams For either C ₃ H ₈ O or C ₃ H ₆ O ₂ [0]	[2]
(ii)	to conserve petroleum or reduce greenhouse effect	[1]
(d) ha	ve same boiling point	[1]
Q# 22/ iGCS	E Chemistry/2009/w/Paper 3/	
	 i) C₄H₉OH + 6O₂ → 4CO₂ + 5H₂O If only error is balancing the oxygen atoms 	[2] [1]
	E Chemistry/2010/s/Paper 31/ same general formula same chemical properties same functional group physical properties vary in predictable way common methods of preparation consecutive members differ by CH ₂ any two mark first two ignore others unless it contradicts a point which has been awarded a mark	[2]
(c)	butanoic acid CH ₃ -CH ₂ -COOH / C ₄ H ₈ O ₂ / C ₃ H ₇ COOH / C ₄ H ₇ OOH C ₂ H ₄ O mark ecf to molecular formula	[1] [1] [1]
Q# 24/ iGCS	E Chemistry/2011/w/Paper 31/	
6 (a) (i) correct structural formula of ethanoic acid allow: –OH not: –COOH	[1]
(ii) correct structural formula of ethanol allow: –OH	[1]

Q# 25/ iGCSE Chemistry/2013/s/Paper 31/

1	(a)	(i)	contains carbon and hydrogen cond: only / just		[1] [1]	
		(ii)	(different) boiling points cond: separate		[1] [1]	
	(b)	bitu	men-making roads / roofs / water-proofing, etc.		[1]	
			ricating fraction – waxes / vaseline / grease, etc. or machinery example, e.g. (oil ges / reducing friction	a) bike	e / [1]	
		par	affin fraction – jet fuel / (home) heating or tractors or cooking or lighting		[1]	
		gas	coline fraction – petrol or fuel for cars / vans / trucks		[1]	
Q# 2	6/ id	GCSE	Chemistry/2013/s/Paper 31/			
3	(a)	(i)	pieces have (same) surface area same amount / mass / quantity / volume / number of moles of carbonate		[1] [1]	
		(ii)	no more bubbles / carbon dioxide or piece disappears / dissolves		[1]	
	(b)	exp	eriment 1 Ca ²⁺ + CO ₂ + H ₂ O		[1]	
	(c)	(i)	more concentrated or higher concentration (of acid) (in experiment 1) accept: arguments based on collision theory		[1]	
		(ii)	ethanoic acid is a weak acid or hydrochloric acid is a strong acid accept: stronger or weaker		[1]	
			ethanoic acid less ionised / dissociated / lower / smaller concentration of hydrogaccept: less hydrogen ions and vice versa argument but not dissociation of ions		ns [1]	
		(iii)	lower temperature (particles) have less energy moving more slowly fewer collisions / lower collision rate		[1] [1] [1]	
			lower temperature (particles) have less energy fewer particles collide with the necessary energy to react		[1] [1] [1]	
(d)	(i)	C ₆ H	note: less energy fewer successful collisions gains all 3 marks 12 ept: a correct structural formula	[1]		
	(ii)	sam	ne molecular formula not: chemical formula erent structural formulae / structures	[1] [1]		
Q# 2	7/ io	GCSE	Chemistry/2013/w/Paper 31/			
5	(a)	(i)	have same molecular formula / both are C ₅ H ₁₂ they have different structural formulae / different structures			[1] [1]
		(ii)	CH ₃ -CH ₂ -CH=CH-CH ₃ / any other correct isomer			[1]
Q# 2	8/ io	GCSE	Chemistry/2014/s/Paper 31/ Q3			
(c)	(i)	CI	$H_{c} + 2O_{o} \rightarrow CO_{o} + 2H_{o}O_{o}(1)$		[1]	

(c) (i)
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 (1)

(ii) would get a mixture of helium and carbon dioxide or would get a mixture of gases

or waste of methane/natural gas/fossil fuel (1)

Q# 29/ iGCSE Chemistry/2015/s/Paper 31/

4(a)(i)	Any three from: same general formula; contain the same functional group; consecutive members differ by CH ₂ ; common methods of preparation; same or similar chemical properties; physical properties vary in a predictable manner / show trends / show a gradual change / an example of a physical variation e.g. mpt, bpt volatility viscosity;	3	I different physical properties / physical properties change / an unqualified or slight change R same or similar physical properties
4(a)(ii)	propanol/propan-1-ol/propan-2-ol;	1	
4(a)(iii)	if molecular formula is given as $C_{10}H_{22}O$ award 2 marks if not, look for evidence of some correct working for one mark $158-17=141$ OR $12n+2n+1=141$ OR $n=10$	2	A $C_{10}H_{21}OH$ for two marks A $(10 \times 12) + (22 \times 1) + 16 = 158$ for one (working) mark
4(b)	they have the same molecular formula ($C_4H_{10}O$); different structures;	2	A same number of each type of atom I same number of atoms A different structural formula or different arrangement of atoms

Q# 30/ iGCSE Chemistry/2011/w/Paper 31/ Q6

synthetic – only two monomers	[1]
protein – many different monomers	[1]
or:	
protein has 1 C=O and 1N-H	[1]
nylon has 2 C=O / 2N-H	[1]
or:	
synthetic – one monomer is a dicarboxylic acid and the other is a diamine	[1]
protein all monomers are amino acids	[1]
	protein – many different monomers or: protein has 1 C=O and 1N–H nylon has 2 C=O / 2N–H or: synthetic – one monomer is a dicarboxylic acid and the other is a diamine

Q# 31/ iGCSE Chemistry/2012/w/Paper 31/

6	(a)	(i)	amino acid / peptides;	[1]
			salt / carboxylate or soap / fatty acid or glycerine / alcohol;	[1]
			sugars or glucose;	[1]
			accept: named sugar	

(ii)	polyester;	[1]
	allow: named polyester	
	polyamide;	[1]
	allow: nylon	

(b)	one correct amide linkage;	[1]
	second amide linkage correctly orientated	
	NHCO – followed by – NHCO –;	[1]
	note: manamere are amino acide not diaminos or dicarbovulis acid	

Q# 32/ iGCSE Chemistry/2015/w/Paper 31/

2(c)	chromatography;	1
	use a locating agent/the two acids move at different rates/alanine travels faster/alanine higher up paper/travels further;	1

Q# 33/ iGCSE Chemistry/2015/w/Paper 31/ Q7 (c)

- (-) (-)		
7(c)(iii)		
	one correct –O– link between rectangles; two correct glucose units with continuation bonds;	1
7(c)(iv)	the reaction of glucose with oxygen to release (carbon dioxide and water and) energy; or the reaction of glucose in a biological system to release energy;	1

Q# 34/ iGCSE Chemistry/2015/s/Paper 31/

4(c)(i)	M1 butene or but-1-ene;		M1 and M2 are independent A but-2-ene for M1
	M2 structural formula of but-1-ene;	2	Minimum acceptable structure is CH ₃ CH ₂ CH=CH ₂ Double bond must be shown R structure of but-2-ene for M2

Q# 35/ iGCSE Chemistry/2009/s/Paper 31/

(a) biodegradable or breaks down naturally made from a renewable source or does not use up petroleum

reduce visual pollution or reduces need for landfill sites or less danger to wildlife	
any TWO	
ignore mention of toxic gases	

-green memory or terms garden			

(b)	(i)	ester	[1]
		accept polyester or fat or lipid or vegetable oil or carboxylic acid	

(ii)	acid or carboxylic <u>acid</u> or alkanoic <u>acid</u>	[1]
	alcohol or hydroxyl or alkanol	[1]
	NOT formulae NOT hydroxide	

(iii)	condensation COND because water is formed in reaction	[1]
	or monomer does not have C=C bond	[1]

Q# 36/ iGCSE Chemistry/2010/s/Paper 31/

(b)	(i)	polyamide / amide / peptide / polypeptide	[1]
	(ii)	correct amide linkage NHCO then CONH cond to mark 1, 2 monomers (different shading in box)	[1] [1]
		cond continuation (to ONE correct linkage)	[1]

OR nylon 6	
only one linkage – NHCO	[1]
cond only one monomer	[1]
cond continuation (to correct linkage)	[1]

Q# 37/ iGCSE Chemistry/2010/w/Paper 31/

• •	-, -			,,,	, · - ·										
5	(a)	(i)	many	(simple)	molecules	form	one	(large)	molecule	1	monomer	molecules	form	one	
			polym	er moleci	ule									[1]	

(ii)	addition - polymer is the only product	[1]
	accept - nX → Xn	
	condensation polymer and simpler molecules formed	[1]
	accept $nX \rightarrow Xn + nHCI/H_2O$	

Q# 38/ iGCSE Chemistry/2010/w/Paper 31/ Q5 (b)

Z. 201 1222 2	
(iv) must have three correct units	[1]
cond continuation	[1]
accept –(CH2–CH(C1))n–	
O# 39/ iGCSF Chemistry/2011/s/Paper 31/	

[2]

[1]

Patrick Brannac

8 (a)	addition – polymer only product / only one product accept monomer has C=C accept monomer and polymer have same empirical formula accept no loss of material in polymerisation not only one monomer	[1]
	condensation – polymer and water / small molecule formed	[1]
(b)	-CH ₂ – CC l ₂ - repeat unit correct COND continuation	[1] [1]
(c)	CH ₂ =CHOOCCH ₃	[1]
Q# 40/ io	GCSE Chemistry/2011/s/Paper 31/ Q8	
0	OC(CH ₂) ₄ CONH(CH ₂) ₆ NH- COND amide correct linkage orrect repeat units ontinuation ot NH ₂ or COOH endings	[1] [1] [1]
	GCSE Chemistry/2011/w/Paper 31/ (i) ethyl ethanoate	[1]
	(ii) -OC ₆ H ₄ COOCH ₂ CH ₂ O- correct ester linkage correct repeat units continuation accept: boxes if it is clear what the box represents	[1] [1] [1]
	(iii) any two from: long time to decay landfill sites visual pollution / litter danger to animals	
	poisonous gases when bumt accept: any correct suggestion	[2]

Q# 42/ iGCSE Chemistry/2012/s/Paper 31/

7 (a) burning

produces toxic gases / harmful to health increases greenhouse gases / global warming reduces visual pollution / litter reduces risks to wildlife shortage of landfill sites / reduces space needed in landfill sites / saves space non-biodegradable / long time to rot / decompose / accumulates waste burning source of energy / used to generate electricity

recycling

conserves petroleum / natural resources
difficult to recycle / expensive / takes much energy
problems over sorting
reduces need for landfill
quality of plastic is reduced each time it is recycled
four DIFFERENT valid points which are advantages or disadvantages of burning and/or
recycling

(b)	(i)	a	ddition (polymerisation);	[1]
		(p	polymer) only product / no by-products;	[1]
		C	ondensation (polymerisation);	[1]
		(p	polymer and) simple molecule / water / hydrogen chloride / one other product form	s; [1]
	(ii	•	correct linkage (for a polyamide / polyester); wo different monomers;	[1] [1]
Q# 4	3/ i0	GCSE	Chemistry/2013/w/Paper 31/	
	(d)	C	CH ₂ -CH(CN)-CH ₂ -CH(CN)- crrect repeat unit CH ₂ -CH(CN) OND: at least 2 units in diagram continuation	[1] [1] [1]
Q# 4	4/ i0	GCSE	Chemistry/2014/s/Paper 31/	
8	(a)	(i)	CH ₃ -CH=CH-CH ₃ (1)	[1]
		(ii)	one correct amide linkage between two rectangles (1)	
			correct sequencing of a second amide link and monomers (1)	
			two correct amide links and rest of structure correct (including additional monomers if seen) and correct continuation bonds (1)	[3]
			—C————N— 3 marks	
		(iii)	protein or polypeptide or named protein (1)	[1]
		(iv)	addition: only the polymer or one product is formed (1)	
			condensation: the polymer and a small molecule/water/HCl is formed (1)	[2]
	(b)	(i)	does not break down or rot or decompose (1)	
			by microbes or fungi or bacteria or by living organisms (1)	[2]
		(ii)	Any three from: visual pollution (1)	[3]
			(shortage of) landfill sites (1)	
			danger to wildlife / animals (including at sea) (1)	
			toxic gases when burnt or greenhouse gases produced when burned (1)	
	(c)	An	y two from:	[2]

(c)	Any two from:	[2]
	resistant to corrosion/unreactive to water/more durable (1)	
	lighter/less dense (1)	
	easier to manufacture/can be moulded (1)	
	good insulator/keeps the water cold (1)	
/		[Total: 14]
45/ K	GCSE Chemistry/2014/w/Paper 31/Q6	

Q# 45/

(b) correct ester linkage [1] two ester linkages (COND on M1) continuation (COND on M2)

[1] [1]

Q# 46/ iGCSE Chemistry/2015/w/Paper 31/

Question	Answer	Marks
4(a)(i)	any two from:	2
4(a)(ii) (produce) toxic gases or CO or HCl or HF/carbon dioxide/greenhouse gases;		1
4(b)	any two from: bags/clothing or specified clothing/packaging/bowls/cups/plates/flooring/carpets/pipes/insulation/non-stick coatings/ropes;	

Question	Answer	Marks
4(c)(i)	CH ₂ =CHCH ₃ double bond is shown; rest of structure correct;	2
4(c)(ii)	ester;	1
4(c)(iii)	(carboxylic) acid; alcohol;	1
4(d)	addition – polymer only product/only one product; condensation – (polymer and) simple molecule/water/hydrogen chloride made; polymer A is an addition polymer and polymer B is a condensation polymer;	1 1 1

