
Name: Class: Date:

A Level Chem 33 EQ 22m to 09w **Paper 4** Carboxylic acids and derivatives 85 marks

As you start and work through this worksheet you can tick off your progress to show yourself how much you have done, and what you need to do next. The first task is just to read the first question and should take you less than 3 minutes to complete.

Danier A Tania Chaeldist	RANK:	P4	P4	P4	P4	P4	P4 ¹	P4	P4
Paper 4 Topic Checklist Tick each task off as you go	KAINK.	Noob	Novice	Bronze	ze Silver Gold	Winner	Hero	Legend	
along	Marks	1 Q	1 Q	10% of	25% of	40% of	50% of	75% of	100% of
	IVIdIKS	Started	done	marks	marks	marks	marks	marks	marks
Topic 33 (marks)	85		5	9	21	34	43	64	85
Time - 72 seconds per									
mark (minutes)	103		6	10	26	41	52	78	103

What the most thoughtful students will get out of their extensive studying will be a capacity to do meaningful brain-based work even under stressful conditions, which is a part of the self-mastery skillset that will continue to deliver value for the whole of their lives. Outstanding grades will also happen, but the most important outcome from skillful action in study is being better at any important tasks even if circumstances are do not feel ideal.

Learning how to manage oneself so we can more reliably get ambitious and successful outcomes out of our challenges in a productive and positive way is one aspect of life's most valuable pursuit summarised and inscribed on the Temple of Apollo at Delphi: "know thyself".

- 1. To complete these questions, as important as your answer, is checking your answer against the mark scheme.
- 2. For each question, or page, convert your mark score into a percentage. This will allow you to see (and feel) your progress as you get more experience and understanding with each topic.
- 3. If you find you get a higher percentage answering short answer questions than multiple choice questions that often means you are using the marking scheme correctly; your correct answer might not be fully complete. The marks easiest to miss rely on providing more details fully described.

¹ **DO NOT** work on these higher levels of completion unless you have also achieved at least a "Silver" (25%) in the same topic in Paper 5, if it exists.

33 Carboxylic acids and derivatives

33.1 Carboxylic acids

Learning outcomes

Candidates should be able to:

- 1 recall the reaction by which benzoic acid can be produced:
 - (a) reaction of an alkylbenzene with hot alkaline KMnO₄ and then dilute acid, exemplified by methylbenzene
- 2 describe the reaction of carboxylic acids with PCl₂ and heat, PCl₅, or SOCl₂ to form acyl chlorides
- 3 recognise that some carboxylic acids can be further oxidised:
 - (a) the oxidation of methanoic acid, HCOOH, with Fehling's reagent or Tollens' reagent or acidified KMnO₄ or acidified K₂Cr₂O₇ to carbon dioxide and water
 - (b) the oxidation of ethanedioic acid, HOOCCOOH, with warm acidified KMnO_4 to carbon dioxide
- 4 describe and explain the relative acidities of carboxylic acids, phenols and alcohols
- 5 describe and explain the relative acidities of chlorine-substituted carboxylic acids

33.2 Esters

Learning outcomes

Candidates should be able to:

- 1 recall the reaction by which esters can be produced:
 - (a) reaction of alcohols with acyl chlorides using the formation of ethyl ethanoate and phenyl benzoate as examples

33.3 Acyl chlorides

Learning outcomes

Candidates should be able to:

- 1 recall the reactions (reagents and conditions) by which acyl chlorides can be produced:
 - (a) reaction of carboxylic acids with PCl₂ and heat, PCl₅, or SOCl₂
- 2 describe the following reactions of acyl chlorides:
 - (a) hydrolysis on addition of water at room temperature to give the carboxylic acid and HC1
 - (b) reaction with an alcohol at room temperature to produce an ester and HC1
 - (c) reaction with phenol at room temperature to produce an ester and HC1
 - (d) reaction with ammonia at room temperature to produce an amide and HC1
 - (e) reaction with a primary or secondary amine at room temperature to produce an amide and HC1
- 3 describe the addition-elimination mechanism of acyl chlorides in reactions in 33.3.2(a) (e)
- 4 explain the relative ease of hydrolysis of acyl chlorides, alkyl chlorides and halogenoarenes (aryl chlorides)

Q# 368/ ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 6 /www.SmashingScience.org :o)

6 Lidocaine is used as an anaesthetic. A synthesis of lidocaine is shown in Fig. 6.1.

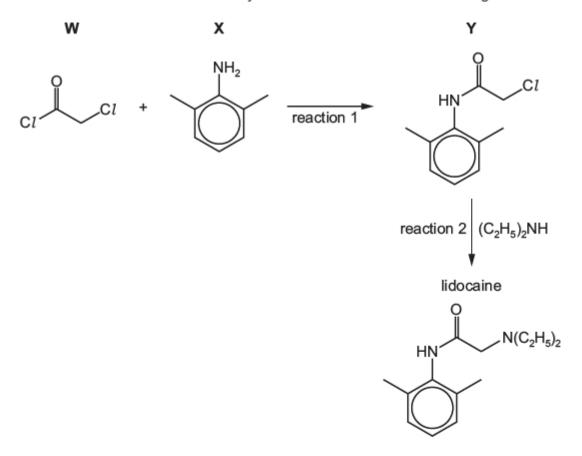


Fig. 6.1

	(a)	${\bf W}$ can be formed by reacting HOCH ₂ COOH with an excess of SOC l_2 .
		Write an equation for this reaction.
		[1]
	(b)	After ${\bf W}$ and ${\bf X}$ have reacted together, an excess of ${\rm CH_3COONa(aq)}$ is added to the reaction mixture.
		Suggest why.
		[1]
(c)	The	reaction of W with X , reaction 1, follows an addition–elimination mechanism.
		nplete the mechanism for the reaction of W with X . ude all relevant curly arrows, lone pairs of electrons, charges and partial charges.

Use Ar-NH2 to represent X.

[4]

(d) (C₂H₅)₂NH reacts with Y in reaction 2.

Explain why (C₂H₅)₂NH can act as a nucleophile.

......[1]

Q# 369/ ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 4 /www.SmashingScience.org :o) (d) K can also be synthesised from phenol, C_8H_5OH .

Fig. 4.4 shows several reactions of phenol.

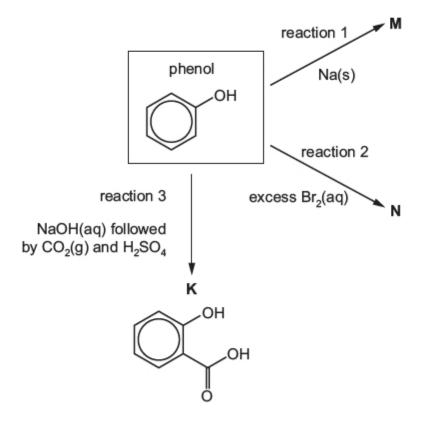


Fig. 4.4

(iii)	Explain why phenol is a weaker acid than K .	
	וכז	
Q# 370/ A	[2] Lvl Chemistry/2021/s/TZ 1/Paper 4/Q# 6 /www.SmashingScience.org :o)	
6 (a)	Compare and explain the relative acidities of butanoic acid, ethanol, ethanoic acid and water	er.
	>>>>	
	most acidic least acidic	
		[4]
(b)	Three carboxylic acids, methanoic acid, HCO_2H , ethanedioic acid, HO_2CCO_2H , a butanedioic acid, $HO_2CCH_2CH_2CO_2H$, are compared. Two tests were carried out on separa samples of each organic acid, as shown.	
	The following results were obtained. \checkmark = observed change x = no observed reaction	

The following results were obtained.	V - observed change	x - no observed reaction

test	reagents and conditions	HCO₂H	HO ₂ CCO ₂ H	HO ₂ CCH ₂ CH ₂ CO ₂ H	observed change
1		✓	х	X	
2		✓	✓	X	

(i) Complete the table with the reagents and conditions and the observed change for a positive test. [3]

Assume these organic acids all have a similar acid strength.

Q# 371/ ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 6 /www.SmashingScience.org :o)

6 Fumaric acid is a naturally occurring dicarboxylic acid.

fumaric acid

(a) Identify the products of the reaction between fumaric acid and an excess of hot, concentrated, acidified manganate(VII).

.....[1]

Q# 372/ ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 5 /www.SmashingScience.org :o)

- (b) Compound M is made from 1,3-dimethylbenzene in a two-step synthesis.
 - 1,3-dimethylbenzene L M

 step 1

 C₈H₆O₄

 step 2

 Cl
 - (i) Draw the structure of L.

Q# 373/ ALvl Chemistry/2020/s/TZ 1/Paper 4/Q# 6 /www.SmashingScience.org :o)

6	(a)	Compare and explain the relative acidities of 2-chloropropanoic acid, 3-chloropropanoic acid and propanoic acid. Explain your answer.					
		>					
		most acidic least acidic					
		explanation					
	(c)	Three tests were carried out on separate samples of the organic acids shown in the table.	[3]				
	(-)	The following results were obtained.					
		√ = observed change X = no observed reaction					
		v - 110 003c1/cu 1cactiOH					

test	reagent(s) and conditions	HCO₂H	CH₃COCO₂H	HO₂CCO₂H	observed change
1		√	x	x	
2		x	√	x	
3		✓	x	√	

Complete the table with the reagent(s) and conditions and the observed change for each test. Assume these organic acids all have a similar acid strength. [5]

Q# 374/ ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 1 /www.SmashingScience.org :o)

(iii) [Fe(C₂O₄)₂Cl₂]⁴⁻ contains ligands which are anions of ethanedioic acid, HO₂CCO₂H.

Complete the table to show any observations for the reactions of HO2CCO2H with the named reagents.

Where no change is observed, write 'none'.

reagent	observations with HO ₂ CCO ₂ H
warm acidified manganate(VII)	
2,4-dinitrophenylhydrazine	
warm Tollens' reagent	

[2]

[Total: 20]

Q# 375/ ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 8 /www.SmashingScience.org :0)

Abscisic acid, C₁₅H₂₀O₄, is a plant hormone.

abscisic acid, C₁₅H₂₀O₄

(b) Abscisic acid is reacted with an excess of NaBH₄.

Give the molecular formula of the organic product formed.

- (c) If abscisic acid is treated with an excess of hot, concentrated, acidified KMnO₄, three different carbon-containing products are formed.
 - (i) Draw the skeletal formula of the carbon-containing product with the largest molecular mass.

[1]

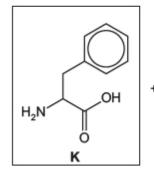
(ii)	Identify the carbon-containing product with the smallest molecular mass. Explain how th product arises.	is
	[2]
(iii)	Identify the third carbon-containing product of this reaction by giving its displayed structural formula.	or
# 376/ ALvI (7 The thre	Chemistry/2018/s/TZ 1/Paper 4/Q# 7 /www.SmashingScience.org :o) see substances shown all have some acidic properties.	1]
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(b) (i)	propanoic acid propan-1-ol phenol Give the order of the relative acidities of propanoic acid, propan-1-ol and phenol, statir the most acidic first.	ıg
(ii)	Explain your answer to (i).	1]
		[ے

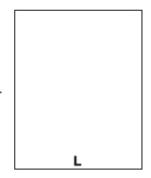
	(c)	Methanoic acid, HCO ₂ H, has a similar acid strength to propanoic acid.	
		Describe a chemical test to distinguish between these two acids. Name the acid which positive result in this test and describe the observations that would be made.	gives a
(d)		e ester phenyl propanoate, $C_2H_5CO_2C_6H_5$, can be made from phenol and propanoic aci	
		wo-step synthesis. The first step produces an acyl chloride. r this two-step synthesis,	
	:	draw the structure of the product of the first step, state the reagents and conditions needed for each step of the synthesis.	
		LVI Chemistry/2018/m/TZ 2/Paper 4/Q# 9 /www.SmashingScience.org :o)	[3]
a)) De	escribe and explain the relative acidities of benzoic acid, phenylmethanol and 4-methylphenol. CO ₂ H CH ₂ OH H ₃ C OH	
		benzoic acid phenylmethanol 4-methylphenol	
		ron	
Q# 37	 7 8/ ∆	[3] NLvl Chemistry/2018/m/TZ 2/Paper 4/Q# 1 /www.SmashingScience.org :o)	

(d) (i)	The ethanedioates of the Group 2 elements, MC ₂ O ₄ , decompose on heating to produce a
	mixture of two different gases and the solid oxide, MO, only.

(ii)	Describe two observations you would make during the reaction when ethanedioic acid,
	H ₂ C ₂ O ₄ , is warmed with acidified manganate(VII) ions.

(O)


[Total: 14]


Q# 379/ ALvl Chemistry/2017/m/TZ 2/Paper 4/Q# 7 /www.SmashingScience.org :o)

7 The compound Advantame is a sweetener that tastes approximately 25 000 times sweeter than sucrose.

Advantame

(b) The decomposition of Advantame produces three molecules, J, K and L. The RO- group in Advantame is unreactive.

(i) Suggest possible reagents and conditions for this decomposition.

.....[1]

(ii) Name the type of reaction occurring.

.....[1]

(iii) Draw the structure of L in the box above. [1]

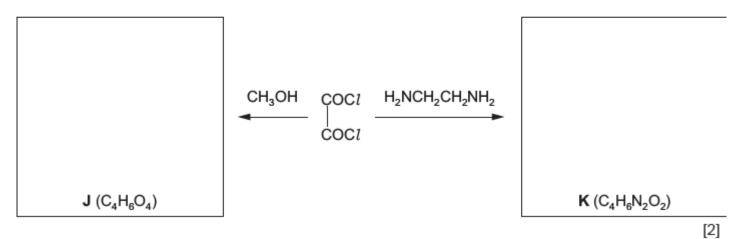
Q# 380/ ALvl Chemistry/2016/s/TZ 1/Paper 4/Q# 10 /www.SmashingScience.org :0)

- 10 (a) Ethanedioic acid, C₂O₄H₂, occurs in many vegetables. The amount that occurs in spinach can be estimated as follows.
 - 40.0 g of spinach leaves are crushed and mixed with distilled water, using a mortar and pestle.
 - The mixture is filtered, and the leaves are washed with a little more water.
 - The combined filtrate and washings are made up to 100.0 cm³ with water.
 - A 25.0 cm³ portion of the resulting solution is added to a conical flask, along with an excess
 of dilute sulfuric acid.
 - The acidified solution is warmed, and then titrated with 0.0200 mol dm⁻³ KMnO₄.

The equation for the reaction between ethanedioic acid and acidified manganate(VII) ions is shown.

$$2MnO_4^- + 6H^+ + 5C_2O_4H_2 \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

In the titration, 15.20 cm³ of KMnO₄ was required to reach the end-point.


Calculate the percentage by mass of ethanedioic acid in the spinach leaves.

percentage of ethanedioic acid = % [3]

(b)	Ethanedioic	acid c	an be	converted int	to ethanedioy	l chloride:
v	~,	Lulancalore	acia c	all bc	convented in	to cultanealoy	CHIOLIC

(i)	State a	a suitable	reagent	for	this	reaction.
-----	---------	------------	---------	-----	------	-----------

(ii) For the reactions of ethanedioyl chloride below, suggest the structures of compounds J and K and draw them in the boxes.

Q# 381/ ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 2 /www.SmashingScience.org :o)

(i) State which product causes the fumes in this reaction.

2 (a) Both chloroalkanes and acyl chlorides react with water, but only acyl chlorides fume in moist air.

	 p.oudot oddood	Ctate minon	1.1

(ii)	Explain why the reactivities of chloroalkanes and acyl chlorides differ.					

[1]

Q# 382/ ALvl Chemistry/2014/w/TZ 1/Paper 4/Q# 5 /www.SmashingScience.org :o)

5 (a) Organohalogen compounds can undergo hydrolysis.

State the relative rates of hydrolysis of the following compounds.

	CH ₃ CH ₂	CH ₂ C1	CH₃CH₂COC1	C ₆ H ₅ C1	
Ex	plain your answer.				
					[3
	Chemistry/2014/w/TZ 1/Pap Describe and explain the		_		anoic acid
(6) (1)	Describe and explain the	relative a	cidities of ciliofoe	ulanoic acid and eu	ianoic acid.
(ii)	Describe and explain the	relative a	cidities of phenol	and ethanol.	
					[3]

Q# 384/ ALvl Chemistry/2013/s/TZ 1/Paper 4/Q# 5 /www.SmashingScience.org :o)

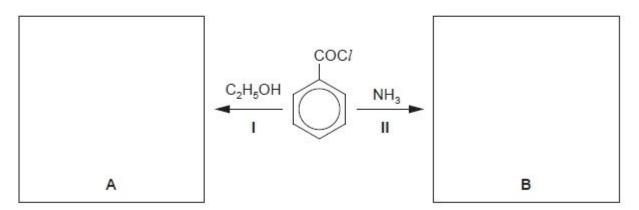
5 (a) A series of experiments is carried out in which the reagent shown at the top of the column of the table is mixed, in turn, with each of the reagents at the side.

Complete the following table by writing in each box the formula of any gas produced. Write x in the box if no gas is produced.

The first column has been completed as an illustration.

	H ₂ O	OH	ÇO ₂ H	ОН
Na	H ₂			
KOH(aq)	х			
Na ₂ CO ₃ (aq)	х			

Q# 385/ ALvl Chemistry/2010/s/TZ 1/Paper 4/Q# 6 /www.SmashingScience.org :o)


- 6 Acyl chlorides are useful intermediates in organic syntheses.

(a) (i) State a suitable reagent for converting carboxylic acids into acyl chlorides.

(ii) Construct an equation for the reaction between ethanoic acid, CH₃CO₂H, and the reagent you have stated in (i).

[2]

(b) (i) In the boxes provided draw the structures of the compounds formed when benzoyl chloride undergoes the following reactions.

- (ii) Name the functional group in
 - compound A
- (iii) What type of reaction is reaction II?

[5]

(c) (i) Suggest suitable acyl chlorides to use in the following reaction. Draw their structures in the boxes provided.

$$\begin{array}{c} + & H_2N \\ \hline \\ C \end{array}$$

Compound E dissolves in, but does not react with, cold water.

(iv) What type of polymer is compound F?

D

Mark Scheme A Leyel Chem 33 EQ 22m to 09w Paper 4 Carboxylic acids and derivatives 85 marks

Q# 368/ A	Lvl Chemistry/2022/m/TZ 1/Paper 4/Q# 6 /www.SmashingScience.org :o)	
6(a)	$HOCH_2COOH + 2SOCl_2 \rightarrow ClCH_2COCl + 2SO_2 + 2HCl$	1
6(b)	to remove / neutralise excess H*/ acid produced OR to react with any acidic by-products / HC2/ SO2 OR to react with any unreacted W	1
6(c)	Ar-NH ₂ M1: curly arrow from lone pair on :NH ₂ to carbonyl C ⁽⁶⁺⁾ =O M2: correct dipole on ⁶⁺ C=O ⁶⁻ AND curly arrow from bond C=O to O ⁽⁶⁻⁾ M3: correct structure of the intermediate (inc. charges) M4: curly arrow from lone pair on :O ⁻ to C=O AND curly arrow from C—C <i>l</i> to C <i>l</i>	4
6(d)	N / nitrogen can donate its lone pair / LP / pair of electrons	1

Q# 369/ ALvl Chemistry/2022/m/TZ 1/Paper 4/Q# 4 /www.SmashingScience.org :o)

	4(d)(iii)	(CO)O—H bond weaker / more easy to donate H* in K	2	ı
		 owing to negative inductive / electron withdrawing effect of C=O / COOH group 		ı
-		 carboxylate anion stabilised / phenoxide anion is less stabilised 		ı
		All three for two marks		ı

Q# 370/ ALvl Chemistry/2021/s/TZ 1/Paper 4/Q# 6 /www.SmashingScience.org :o)

6(a)	M1: ethanoic acid > butanoic acid > water > ethanol							
	M2: a reason given in terms of an electron donating or an electron withdrawing group for one of: strengthening of O–H bond OR weakening of O–H bond OR stability of anion							
	Two out of the three alternatives M3, M4 and M5:							
	M3: ethanol: positive inductive effect / electron donating effect of ethyl / alkyl / R group							
	M4: <u>butanoic acid</u> : positive inductive effect / electron donating effect of propyl / alkyl / R group M5: (either ethanoic or butanoic) <u>acid</u> : negative inductive effect of either C=O or carbonyl OR negative charge delocalised over COO-							
6(b)(i)		reagents and conditions	observed change		3			
	test 1	Tollen's reagent, warm OR	silver mirror					
		Fehling's solution, warm	(brick) red ppt / solid					
	test 2	acidified MnO ₄ -, warm	decolourises OR bubbles					
	M1 / M2	reagents and conditions × 2						
	M3: obs	ervations both correct						

Q# 371/ ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 6 /www.SmashingScience.org :o)

6(a)	CO ₂ and H ₂ O / in words	1	

Q# 372/ ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 5 /www.SmashingScience.org :o)

	, === · · · · · · · · · · · · · · · · ·	
5(b)(i)	HO ₂ C CO ₂ H	1
5(b)(ii)	M1: heat / reflux with acidified / alkaline KMnO4 (then acidify) M2: PC I ₈ OR SOC I ₂ / (heat with) PC I ₈	2
5(b)(iii)	$\begin{array}{c} C_8H_8O_4 + 2PCI_5 \rightarrow C_8H_4O_2CI_2 + 2POCI_5 + 2HCI\\ \textbf{OR}\ C_8H_8O_4 + 2SOCI_2 \rightarrow C_8H_4O_2CI_2 + 2SO_2 + 2HCI\\ \textbf{OR}\ 3C_8H_8O_4 + 2PCI_3 \rightarrow 3\ C_8H_4O_2CI_2 + 2H_3PO_3 \end{array}$	1

Q# 373/ ALvl Chemistry/2020/s/TZ 1/Paper 4/Q# 6 /www.SmashingScience.org :0)

L			
	6(a)	M1 2-chloropropanoic acid > 3-chloropropanoic acid > propanoic acid [1]	3
		M2 CH ₃ CHC1CO ₂ H / C1CH ₂ CH ₂ CO ₂ H (are more acidic) as they contain an electronegative C1 atom so weaken O-H bond / stabilise carboxylate anion [1]	
		M3 CH ₃ CHClCO₂H (is more acidic than ClCH₂CH₂CO₂H) as the Cl atom is closer to CO₂H so weaken O-H bond more / stabilise carboxylate anion more [1]	
Н			

6(c)		1	1	
-(-)		reagents and conditions	observed change	
	test 1	M1 Tollen's reagent, warm OR	silver mirror	
	1001	Fehling's solution, warm	(brick)-red ppt.	
	test 2	M2 aqueous alkaline iodine OR	yellow ppt.	
	10012	2,4-DNPH	orange ppt.	
	test 3	M3 acidified MnO ₄ ⁻ , warm	decolourises (and bubbles)	

Q# 374/ ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 1 /www.SmashingScience.org :o)

1(c)(iii)	reactant	observation with (CO ₂ H) ₂	
	warm H*/MnO ₄ ⁻	decolourised OR effervescence / bubbling / fizzing	
	2,4-DNPH	none / no reaction	
	warm Tollens' reagent	none / no reaction	

Q# 375/ ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 8 /www.SmashingScience.org :o)

8(b)	C ₁₅ H ₂₂ O ₄	1
8(c)(i)	CH ₃ COOH OH CH ₃	1
8(c)(ii)	CO ₂	1
	oxidation / oxidative cleavage	1
8(c)(iii)	CH₃COCO₂H	1

Q# 376/ ALvl Chemistry/2018/s/TZ 1/Paper 4/Q# 7 /www.SmashingScience.org :o)

7(b)(i)	propanoic acid, phenol, propan-1-ol	1
7(b)(ii)	 propan-1-ol: O-H bond strengthened by positive inductive effect of alkyl group OR propoxide ion is destabilised by positive inductive effect of alkyl group 	2
	 phenol: O-H bond weakened by negative inductive effect of ring OR phenoxide ion is stabilised by delocalisation of oxygen lone pair into ring 	
	 propanoic acid: O-H bond weakened by negative inductive effect of C=O OR propanoate ion is stabilised by delocalisation of minus charge by C=O 	
	1 mark for a correct explanation, max 2 marks	
7(c)	Tollens' reagent or Fehling's reagent	1
	methanoic acid gives a silver mirror/solid with Tollen's reagent OR red / orange ppt / solid with Fehlings' reagent	1
7(d)	PCIs or PCIs (+heat) or SOCIs (added to propanoic acid)	1
	product of first step:	1
	add product of first step to phenol in NaOH	1

Q# 377/ ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 9 /www.SmashingScience.org :o)

9(b)	benzoic acid > methylphenol > phenylmethanol	3
	methylphenoxide anion has delocalisation of the lone pair on oxygen over the ring	
	benzoic acid has an (extra) electronegative oxygen or electron withdrawing C=O	

Q# 378/ ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 1 /www.SmashingScience.org :o)

L				1
	1(d)(ii)	the KMnO ₄ would decolourise	2	l
		bubbles/gas evolution would be seen		l

Q# 379/ ALvl Chemistry/2017/m/TZ 2/Paper 4/Q# 7 /www.SmashingScience.org :o)

7(b)(i)	H*(aq) + heat	1
7(b)(ii)	hydrolysis	1
7(b)(iii)	CH₃OH	1

Q# 380/ ALvl Chemistry/2016/s/TZ 1/Paper 4/Q# 10 /www.SmashingScience.org :o)

10 (a)	$\begin{array}{lll} n(\text{MnO}_4^-) &= 0.02 \times 15.2/1000 = 3.04 \times 10^{-4} \text{mol} \\ n(\text{C}_2\text{O}_4\text{H}_2) &= 3.04 \times 10^{-4} \times 5/2 = 7.6 \times 10^{-4} (\text{in 25cm}^3) = 3.04 \times 10^{-3} \text{mol in } 100 \text{cm}^3 \\ M_r &= 24 + 64 + 2 = 90 \\ &= \text{mass of C}_2\text{O}_4\text{H}_2 = 3.04 \times 10^{-3} \times 90 \\ &= 0.2736 \text{g} (0.274) \\ &= \text{percentage} = 0.2736 \times 100/40 = 0.68\% \end{array}$	[1] [1] [1]	
(b) (i)	SOCI ₂ or PCI ₅ or PCI ₃	[1]	
(ii)	J is CH ₃ OCO-COOCH ₃ K is O NH	[1]	

Q# 381/ ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 2 /www.SmashingScience.org :o)

2 (a)	(i)	hydrogen chloride or HC <i>l</i>	1
(i	(ii)	either (RCOCI) has two electron-withdrawing groups/atoms, making the more δ+/electron deficient or (RCOCI) has an oxygen, making the carbon more δ+/electron deficient or (RCOCI) has two electron-withdrawing groups, weakening the C-CI bond	1

Q# 382/ ALvl Chemistry/2014/w/TZ 1/Paper 4/Q# 5 /www.SmashingScience.org :o)

1				
!	5 (a)	CH ₃ CH ₂ COC <i>l</i> > CH ₃ CH ₂ CH ₂ C <i>l</i> > C ₆ H ₃ C <i>l</i>	1	
		 any two of: C-Cl bond strength is weakest in CH₃CH₂COCl ora In C₆H₅Cl (no hydrolysis) C-Cl bond is part of delocalised system OR p-orbital on Cl overlaps with π system OR electrons from Cl overlap with π system CH₃CH₂COCl carbon in C-Cl bond is more electron deficient since it is also attached to an oxygen atom ora 	1+1	[3]

Q# 383/ ALvl Chemistry/2014/w/TZ 1/Paper 4/Q# 4 /www.SmashingScience.org :o)

(b) (i)	acidity of CICH2CO2H > CH3CO2H AND (CICH2CO2H) as an electronegative/electron withdrawing	1		
(ii)	acidity of phenol > CH ₃ CH ₂ OH AND electrons on oxygen (on phenol) delocalised into ring	1		
	OR benzene ring withdraws electrons from oxygen stronger acid linked to weakening O-H bond/anion being stabilised	1	[3]	

Q# 384/ ALvl Chemistry/2013/s/TZ 1/Paper 4/Q# 5 /www.SmashingScience.org :o)

5 (a)

	H₂O	OH	ÇO ₂ H	OH OH
Na	H ₂	H ₂	H ₂	H ₂
KOH(aq)	x	х	х	x
Na ₂ CO ₃ (aq)	Х	х	CO ₂	х

[5]

6 (a) (i) SOCl2 or PCl5 or PCl3

(1)

(ii) $CH_3CO_2H + SOCl_2 \longrightarrow CH_3COCl + SO_2 + HCl$ or $CH_3CO_2H + PCl_5 \longrightarrow CH_3COCl + POCl_3 + HCl$ or $3CH_3CO_2H + PCl_3 \longrightarrow 3CH_3COCl + H_3PO_3$

[2]

(b) (i) A is $C_6H_5CO_2C_2H_5$ B is $C_6H_5CONH_2$

(1)

(1)

(ii) ester amide

(1) (1)

(iii) nucleophilic substitution / condensation

(1) [5]

(c) (i) C is C/COCOC/l
D is C/COCOCOC/l

(1) (1)