
Name: Class: Date:

ALVI Chem 4 EQ P2 22w to 09s Paper 2 States of matter 65marks

As you start and work through this worksheet you can tick off your progress to show yourself how much you have done, and what you need to do next. The first task is just to read the first question and should take you less than one minutes to complete.

Paper 2 Topic 4 Checklist Tick each task off	RANK:	P1 Noob	P1 Novice	P1 Bronze	P1 Silver	P1 Gold	P1 ¹ Winner	P1 Hero	P1 Legend
as you go along		1 Q started	1 Q done	10% of marks	25% of marks	40% of marks	50% of marks	75% of marks	100% of marks
Topic (marks)	65		7	7	16	26	33	49	65
Time @75s/mark (minutes)	81		8	8	20	33	41	61	81

What the most thoughtful students will get out of their extensive studying will be a capacity to do meaningful brain-based work even under stressful conditions, which is a part of the self-mastery skillset that will continue to deliver value for the whole of their lives. Outstanding grades will also happen, but the most important goal from skillful action in study is being better at any important task, even if circumstances do not feel ideal.

As you are moving through your studies you can learn more about yourself by trying out new ways to manage yourself, and analysing how effective those new techniques were. In this reflective process not only will you get better at working positively and productively to deliver ambitious and successful outcomes, but you will be working towards one aspect of life's highest pursuit, summarised and inscribed on the Temple of Apollo at Delphi: "know thyself".

- 1. To complete these questions, as important as your answer, is checking your answer against the mark scheme.
- 2. For each page or group of 10-20 marks, convert your mark score into a percentage. This will allow you to see (and feel) your progress as you get more experience and understanding with each topic.
- 3. Multiple choice questions, done carefully where you explain and show yourself your thinking using written notes as you move through each question, can be more useful than just Paper 2 for students aiming for a C or B grade. Paper 2 should be the larger focus for students aiming for A and A* grades, however.
- 4. If you find you get a higher percentage answering short answer questions than multiple choice questions that often means you are NOT using the marking scheme correctly; your correct answer might not be fully complete for all the marks you are awarding. The marks easiest to miss rely on providing the largest amount of detail.

¹ **DO NOT** work on these higher levels of completion in your AS year unless you have also achieved at least a "**Silver**" (25%) in the same topic in **Paper 1**, which tend also to be easier questions, as well as ""**Silver**" (25%) in the same topic, if it exists, in Paper 3. www.**SmashingScience.org**Patrick Brannac

Page **1** of **14**

4 States of matter

4.1 The gaseous state: ideal and real gases and pV = nRT

Learning outcomes

Candidates should be able to:

- 1 explain the origin of pressure in a gas in terms of collisions between gas molecules and the wall of the container
- 2 understand that ideal gases have zero particle volume and no intermolecular forces of attraction
- 3 state and use the ideal gas equation pV = nRT in calculations, including in the determination of M_r

4.2 Bonding and structure

Learning outcomes

Candidates should be able to:

- 1 describe, in simple terms, the lattice structure of a crystalline solid which is:
 - (a) giant ionic, including sodium chloride and magnesium oxide
 - (b) simple molecular, including iodine, buckminsterfullerene C₆₀ and ice
 - (c) giant molecular, including silicon(IV) oxide, graphite and diamond
 - (d) giant metallic, including copper
- 2 describe, interpret and predict the effect of different types of structure and bonding on the physical properties of substances, including melting point, boiling point, electrical conductivity and solubility
- 3 deduce the type of structure and bonding present in a substance from given information

Q# 94/ ALvl Chemistry/2021/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

- 2 Carbon monoxide gas, CO(g), and nitrogen gas, N₂(g), are both diatomic molecules.
- (c) Both carbon monoxide and nitrogen are gases at room temperature and pressure.

They both behave like ideal gases under certain conditions.

State the two conditions necessary for these two gases to approach ideal gas behaviour.
[1]
Explain why N ₂ (g) behaves more like an ideal gas than CO(g) does at 20.0 °C and 101 kPa.
[2]

(u)	20.0 °C.	occupies foochi at forkra and
	Use relevant information from the Data Booklet. Show your	working.
	Assume nitrogen behaves as an ideal gas.	
		mol
		[3]
Q# 9	Q# 95/ ALvl Chemistry/2021/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.c	[Total: 11]
1		mperature and pressure.
	Calculate the pressure, in Pa, of Kr(g) in the conta Assume Kr(g) behaves as an ideal gas.	iner.
	Show your working.	
	pres	sure = Pa [3
	(iii) State and explain the conditions at which krypton bel	
		[2]

Q# 96/ ALvl Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org

- 3 Glycerol, CH₂(OH)CH(OH)CH₂OH, is widely used in the food industry and in pharmaceuticals.
 - (a) A series of reactions starting from glycerol is shown.

(b) Glycerol can be used as a starting material in the manufacture of nitroglycerine, C₃H₅N₃O₉.

Nitroglycerine decomposes rapidly on heating to form a mixture of gases.

$$4C_3H_5N_3O_9(I) \rightarrow 12CO_2(g) + 10H_2O(g) + 6N_2(g) + O_2(g)$$

A sample of nitroglycerine decomposes, releasing $1.06\,\mathrm{dm^3}$ of $\mathrm{O_2}(g)$ at $850\,\mathrm{K}$ and $1.00\times10^5\,\mathrm{Pa}$.

(i) Calculate the mass of nitroglycerine that decomposes.

mass of nitroglycerine = g [3]

(ii) Calculate the total volume of gas released by this decomposition at $850 \, \text{K}$ and $1.00 \times 10^5 \, \text{Pa}$.

total volume of gas = dm3 [1]

Q# 97/ ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

(iii)	$Cl_2(g)$ does not behave as an ideal gas under these conditions.
	Explain why $Cl_2(g)$ behaves even less ideally at:
	very high pressures
	very low temperatures.
	very low temperatures.
	[2]
	[Total: 11]
	Lvl Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org F is the only known molecule that contains only the elements hydrogen, oxygen and fluorine.
DESCRIPTION OF THE PROPERTY OF	iterhalogen compounds, such as BrC l or IF $_5$, contain two or more different halogen atoms
	nat are covalently bonded.
D	is an interhalogen compound that contains only chlorine and fluorine.
А	t 0 °C and 101325 Pa, 1 dm³ of D has a mass of 4.13 g.
(i	Use the general gas equation to calculate the relative molecular mass, $M_{\rm p}$ of ${\bf D}$.
	$M_{\rm r} = $ [3]
	[3]

			you were unable to calculate the $M_{\rm r}$ in (i), assume that the $M_{\rm r}$ is 130.5. This is not the errect value.
			molecular formula of D =
			[1]
			emistry/2018/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org and silicon are elements in Group 14.
(a	a) (C ₆₀ 8	and diamond are allotropes of carbon.
	(i)	Describe the lattice structure of solid C ₆₀ .
			[2]
	(i		$\rm C_{60}$ sublimes (turns directly from solid to gas) at about 800 K. Diamond also sublimes but only above 3800 K.
			Explain why C ₆₀ and diamond sublime at such different temperatures.
	(a) C ₆₀ (ii) (b) C ₆₀ hydi		
			[4]
(t			forms hydrocarbons with similar chemical properties to those of alkenes. One such rocarbon is $C_{60}H_{18}$.
	(i)	State what is meant by the term hydrocarbon.
			[1]

(ii) Use your answer to (i) to determine the molecular formula of D.

	(ii)	Describe a test to indicate the presence of double bonds between carbon atoms in $\rm C_{60}H_{18}$. Give the result of the test.
		test
		result
		[2]
(c)	0.14	14 g of C_{60} was placed in a 100 cm ³ container of hydrogen gas at 20 °C and 1.00 \times 10 ⁵ Pa.
	The	container was heated to make the C ₆₀ and hydrogen gas react.
	The	reaction occurred as shown in the equation.
		$C_{60}(s) + xH_2(g) \rightarrow C_{60}H_{2x}(s)$
		er the reaction, the container was allowed to cool to 20 °C. The pressure decreased to 1×10^4 Pa. All of the C ₆₀ had reacted.
	(i)	Name the type of reaction that occurred.
		[1]
	(ii)	Calculate the amount, in moles, of $C_{\rm e0}$ that reacted.
		amount of C ₆₀ = mol [1]
į.	(iii)	Calculate the amount, in moles, of hydrogen gas that reacted with the C_{60} .
		amount of hydrogen gas = mol [2]
-	(iv)	Use your answers from (ii) and (iii) to deduce the molecular formula of the hydrocarbon, $\rm C_{60}\rm H_{2x^-}$
		If you were unable to calculate the amount of hydrogen gas, assume that 0.00240 mol of hydrogen gas reacted. This is not the correct value for the amount of hydrogen gas that reacted.

Patrick Brannac

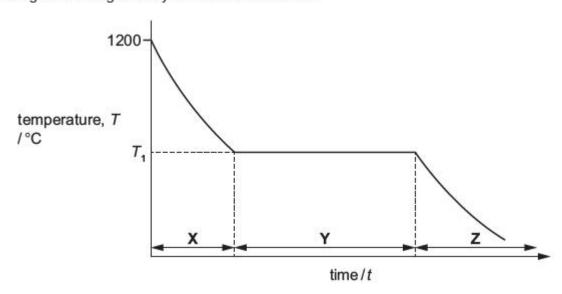
(d) Silicon shows the same kind of bonding and structure as diamond.

(i) State the type of bonding and structure shown by silicon.

•	

		ro

Q# 100/ ALvl Chemistry/2017/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

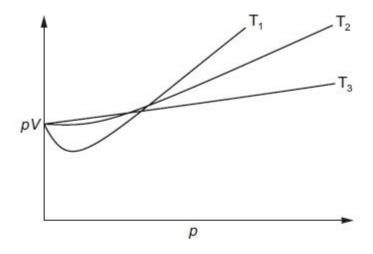

- 2 Structure and bonding can be used to explain many of the properties of substances.
 - (a) Copper, ice, silicon(IV) oxide, iodine and sodium chloride are all crystalline solids.

Complete the table with:

- the name of a type of bonding found in each crystalline solid,
- the type of lattice structure for each crystalline solid.

crystalline solid	type of bonding	type of lattice structure
copper		
ice		
silicon(IV) oxide		
iodine		
sodium chloride		

(c) The graph represents how the temperature of a sample of copper (melting point 1085°C) changes as it is gradually cooled from 1200°C.


[5]

(i)	Identify the state(s) of matter present during each stage of the process she graph.	own in the
	x	
	Υ	
	z	[2]
(ii)	State what is happening to the energy and movement of the particles in the copstage X .	
(iii)	Explain why the temperature stays constant at T_1 during stage \mathbf{Y} .	
		[2]
		[Total: 15]
	ALvl Chemistry/2016/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org his question is about Period 3 elements and their compounds.	
(a)) Give an explanation for each of the following statements.	
	(iii) Sodium is a better electrical conductor than phosphorus.	
	(iv) Magnesium is a botter electrical conductor than codium	[2
	(iv) Magnesium is a better electrical conductor than sodium.	
		[1

Q# 102/ ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

- 2 The relationship pV = nRT can be derived from the laws of mechanics by assuming ideal behaviour for gases.
 - (a) The graph represents the relationship between pV and p for a real gas at three different temperatures, T₁, T₂ and T₃.

(i) Draw one line on the graph to show what the relationship should be for the same amount of an ideal gas.
[1]

	5, dii, 14, 41, 51, 51, 51, 51, 51, 51, 51, 51, 51, 5
(ii)	State and explain, with reference to the graph, which of T_1, T_2 or T_3 is the lowest temperature.
	[1]
iii)	Explain your answer to (ii) with reference to intermolecular forces.
	[1]
iv)	State and explain the effect of pressure on the extent to which a gas deviates from ideal behaviour.

(b) A flask with a volume of 100 cm³ was first weighed with air filling the flask, and then with another gas, Y, filling the flask. The results, measured at 26 °C and 1.00 × 10⁵ Pa, are shown.

Mass of flask containing air = 47.930 g

Mass of flask containing Y = 47.989 g

Density of air $= 0.00118 \,\mathrm{g \, cm^{-3}}$

Calculate the relative molecular mass, M_n of Y.

$$M_r$$
 of Y =[4]

Q# 103/ ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

Some intercontinental jet airliners use kerosene as fuel. The formula of kerosene may be taken as C₁₄H₃₀.

Bicycles may be carried on commercial airliners. When carried on airliners, bicycles are placed in the luggage hold. This is a part of the aircraft which, in flight, will have different temperatures and air pressures from those at sea level.

This question concerns the change in pressure in an inflated bicycle tyre from when it is at sea level to when it is in the hold of an airliner in flight.

(d) At sea level and a temperature of 20 $^{\circ}$ C an inflated bicycle tyre contains 710 cm³ of air at an internal pressure of 6×10^5 Pa.

Use the general gas equation PV = nRT to calculate the amount, in moles, of air in the tyre at sea level.

The same bicycle, with its tyres inflated at sea level as described in (d) above, is placed in the luggage hold of an airliner. At a height of 10 000 m, the temperature in the luggage hold is $5\,^{\circ}$ C and the air pressure is 2.8×10^4 Pa.

(e) Assuming the volume of the tyre does not change, use your answer to (d) to calculate the pressure inside the tyre at a height of 10 000 m.

[2]

	/l Chemistry/2021/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org	
2(c)(i)	high temperature AND low pressure	-
2(c)(ii)	M1 CO is polar / has a permanent dipole OR N ₂ is non-polar	- 5
	M2 IMF in CO are (more) significant / larger OR IMF in N2 are smaller / less significant	ä
	Alternative answer M1 (Size of) N₂ smaller than CO OR volume of N₂ molecules / particles smaller	
	Alternative answer M2 volume of N₂ molecules / particles is more negligible ORA	
2(d)	M1 correct conversion to consistent units P = 101 000	į.
	M2 use of all values from M1 in correct relationship, n = PV / RT	3
	M3 calculation = 4.15 × 10 ⁻³ mol	
95/ AL	/l Chemistry/2021/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org	
1(b)(ii)	M1: moles of krypton = 2.00 ÷ 83.8 (= 0.0239 mol)	33
	M2: conversion of value into consistent units for $pV = nRT$	
	M3: $p = \frac{M1 \times 8.31 \times 393}{5.00 \times 10^{-3}} = 15600 \text{Pa}$	
1(b)(iii)	M1: low pressure AND high temperature	
	M2: Either of: volume of particles is negligible (compared to volume of container) VdW forces are insignificant (owing to high kinetic energy of particles)	
96/ AL	I Chemistry/2020/m/TZ 2/Paper 4/Q# 3/www.SmashingScience.org	
3(b)(i)	M1 no. of mol $O_2 = \frac{1.00 \times 10^5 \times 1.06 \times 10^{-3}}{(8.31 \times 850)}$	3
	200	

 $1.06 \times 29 = 30.7(4) \, dm^3$

3(b)(ii)

M3 mass of nitroglycerine = 0.0600 × 227 = 13.6(2) (g)

Q# 97/ ALvl Chemistry/2019/s/TZ 1/Paper 4/Q# 3/www.SmashingScience.org

3(d)(iii	3(d)(iii)	M1 size / volume of molecule / particle becomes significant / non-negligible OR IMFs become significant / non-negligible		
		M2 IMFs becomes significant / non-negligible / collisions are not elastic	1	

Q# 98/ ALvl Chemistry/2019/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org

2(d)(i)	pV =nRT :: $n = \frac{pV}{RT} = \frac{101\ 325 \times 0.001}{8.31 \times 273} = 0.0447\ mol$:: $M_r = \frac{m}{n} = \frac{4.13}{0.0447} = 92.4\ or\ 92.5$ M1 Use of $T = 273\ K$, $V = 0.001\ m^3$ and $p = 101325\ Pa$:
	M2 correct use of pV = nRT using values from M1	
	M3 correct calculation of M _r using 4.13 ÷ moles from M2	
2(d)(ii)	CIF ₃	

Q# 99/ ALvl Chemistry/2018/m/TZ 2/Paper 4/Q# 2/www.SmashingScience.org

2(a)(i)	simple molecular regular arrangement (of C ₆₀ molecules)	2
2(a)(ii)	C ₅₀ has (weak) intermolecular / VdW / London / dispersion / id–id forces (and covalent bonds)	4
	diamond has covalent bonds	
	(diamond's) bonds are stronger	
	more energy required / lots of energy to break (covalent bonds in diamond)	
2(b)(i)	(a molecule / compound that is made up of) carbon and hydrogen (atoms) only	1
2(b)(ii)	add bromine (water) / Br₂(aq)	2
	(brown to) colourless / decolourised	
2(c)(i)	addition	1
2(c)(ii)	$(n_{CSO} = 0.144 / 720 =) 2 \square 10^{-4}$	1
2(c)(iii)	$pV = nRT$ $\triangle \Delta n = (p_1 - p_2)V / RT$ $\Delta n = (1.00 \square 10^5 - 2.21 \square 10^4).100 \square 10^{-6}/8.31 \square 293$ = 0.00320	2
2(c)(iv)	(C ₆₀ :H ₂ =) 2.00 □ 10 ⁻⁴ : 0.00320 or 1:16	2
	<u>C₆₀H₃₂</u>	
2(d)(i)	giant (molecular) (each Si has four) covalent (bonds)	2

Q# 100/ ALvl Chemistry/2017/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

2(a)	substance	type of bonding	type of lattice structure	
	copper	metallic	giant/metallic	
	ice	covalent OR hydrogen(-bonding) /H(-bonding)	hydrogen-bonded / simple / molecular	
	silicon(IV) oxide	covalent	giant (molecular) / macromolecular	
	iodine	covalent	simple / molecular	
	sodium chloride	ionic	giant / ionic	

2(c)(i)	X = liquid AND Z = solid	X	1
	Y = liquid and solid OR 'liquid / solid' OR 'liquid OR solid'		1
2(c)(ii)	(kinetic) energy reducing		1
	motion slowing	owtte	1
2(c)(iii)	energy given out / released forming bonds / forming bonds exothermic	3	1
	compensates for / counteracts heat loss / cooling	owtte	1
		Total:	15

Q# 101/ ALvl Chemistry/2016/m/TZ 2/Paper 4/Q# 1/www.SmashingScience.org

(iii)	sodium has mobile / free electrons / electrons free (to move throughout the structure)	[1]	5253
	phosphorus is simple/covalent/molecular	[1]	[2]
(iv)	magnesium has two free/delocalised/outer/valence electrons per atom OR more free/delocalised/outer electrons than sodium	[1]	[1]

Q# 102/ ALvl Chemistry/2015/s/TZ 1/Paper 4/Q# 2/www.SmashingScience.org

2 (a) (i)	Straight line drawn horizontally from same intercept	[1]	[1]
(ii)	T ₁ because it shows greatest deviation/furthest from ideal	[1]	[1]
(iii)	reducing T (reduces KE of particles) so intermolecular forces of attraction become more significant	[1]	[1]
(iv)	greatest deviation is at high pressure	[1]	
	increasing pressure decreases volume so volume of particles becomes more significant ora	[1]	[2]
(b)	Mass of air = 100×0.00118 = $0.118 \mathrm{g}$ Mass of flask = $47.930 - 0.118$ = $47.812 \mathrm{g}$ Mass of Y = $47.989 - 47.812$ = $0.177 \mathrm{g}$ $pV = nRT = \frac{m}{M_r} RT$	[1] [1]	
	$M_r = \frac{mRT}{pV} = \frac{0.177 \times 8.31 \times 299}{1 \times 10^5 \times 100 \times 10^{-6}}$	[1]	
	= 44.0 (43.979 to 2 or more sf)	[1]	[4]

Q# 103/ ALvl Chemistry/2011/s/TZ 1/Paper 4/Q# 1/www.SmashingScience.org

(d)
$$n = \frac{PV}{RT} = \frac{6 \times 10^5 \times 710 \times 10^{-6}}{8.31 \times 293}$$
 (1)
= 0.175

(e)
$$P = \frac{nRT}{V} = \frac{0.175 \times 8.31 \times 278}{710 \times 10^{-6}}$$
 (1)

$$= 569410.5634 \text{ Pa} = 5.7 \times 10^5 \tag{1}$$

allow ecf on (d) [2]

[Total: 10]

